精英家教网 > 高中数学 > 题目详情
14.设a,b是关于t的方程t2cosθ+t sinθ=0的两个不等实数根,则过A(a,a2),B(b,b2)两点的直线与双曲线$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1的公共点的个数为0.

分析 求出过A(a,a2),B(b,b2)两点的直线为y=-tanθx,结合双曲线的渐近线方程,可得结论.

解答 解:∵a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,
∴a+b=-tanθ,ab=0,
过A(a,a2),B(b,b2)两点的直线为y-a2=$\frac{{b}^{2}-{a}^{2}}{b-a}$(x-a),即y=(b+a)x-ab,
即y=-tanθx,
∵双曲线$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1的一条渐近线方程为y=-tanθx,
∴过A(a,a2),B(b,b2)两点的直线与双曲线$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1的公共点的个数为0.
故答案为:0

点评 本题考查双曲线的方程与性质,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为 $\left\{\begin{array}{l}{x=2-t}\\{y=-1+t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A、B两点,点P(2,-1)在直线l上,求线段|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.彭州中学计划给新高一某班安排一张课表,课表含语文、数学、外语、物理、化学、生物各一节,共6节课,要求语文、外语排在前三节,生物排在最后两节,物理、化学不相邻,则不同的排法共有(  )
A.40种B.48种C.52种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为Sn,且a2=2,S9=45.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=l,$\frac{{{3^{{b_{n+1}}}}}}{{{3^{b_n}}}}$=${3^{a_n}}$(n∈N+),求数列{$\frac{1}{{{b_n}+n-1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC中,tanA是以-4为第三项,-1为第七项的等差数列的公差,tanB是以$\frac{1}{2}$为第三项,4为第六项的等比数列的公比,则该三角形的形状为锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行图中的程序框图(其中[x]表示不超过x的最大整数),则输出的S值为(  )
A.5B.7C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若A(-1,2),B(0,-1),则直线AB的斜率为(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.南山中学为自主招生考试招募30名志愿者(编号分别是1,2,…,30号),现从中任意选取6人按编号大小分成两组分别到实验校区、南山本部工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一地点的选取种数是60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.证明函数f(x)=x8-x5+x2-x+1的值恒为正值.

查看答案和解析>>

同步练习册答案