精英家教网 > 高中数学 > 题目详情
4.证明函数f(x)=x8-x5+x2-x+1的值恒为正值.

分析 分类讨论,将代数式变形,即可证明结论.

解答 证明:x≥1时,f(x)=x8-x5+x2-x+1=x5(x3-1)+x(x-1)+1=x5(x-1)(x2+x+1)+x(x-1)+1≥0+0+1>1,
0≤x<1时,f(x)=x8-x5+x2-x+1=1-x+x2(1-x3)+x8=1-x+x2(1-x)(1+x+x2)+x8>0,
x<0时,f(x)=x8-x5+x2-x+1=x8+(-x)5+x2+(-x)+1>0.
总之 f(x)>0 恒成立.

点评 本题考查不等式的证明,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设a,b是关于t的方程t2cosθ+t sinθ=0的两个不等实数根,则过A(a,a2),B(b,b2)两点的直线与双曲线$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1的公共点的个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x-ex的增区间为(  )
A.(1,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.方程x2-mnx+m+n=0有整数根,且m.n为自然数,则m、n的有几对,试求出来.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在四面体S-ABC中,SA⊥平面ABC,△ABC是边长为3的正三角形,SA=2,则该四面体的外接球的表面积为(  )
A.B.12πC.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,圆O与直线x+$\sqrt{3}$y+2=0相切于点P,与x正半轴交于点A,与直线y=$\sqrt{3}$x在第一象限的交点为B.点C为圆O上任一点,且满足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,以x,y为坐标的动点D(x,y)的轨迹记为曲线Γ.
(1)求圆O的方程及曲线Γ的方程;
(2)若两条直线l1:y=kx和l2:y=-$\frac{1}{k}$x分别交曲线Γ于点E、F和M、N,求四边形EMFN面积的最大值,并求此时的k的值.
(3)根据曲线Γ的方程,研究曲线Γ的对称性,并证明曲线Γ为椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,数列{cn}的前n项和为Tn,求Tn及使不等式${T_n}<\frac{k}{2014}$对一切n都成立的最小正整数k的值;
(3)设$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1,l∈{N^*})\\{b_n}(n=2l,n∈{N^*})\end{array}\right.$问是否存在m∈N+,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线l:y=kx+1被圆C:x2+y2-2x-3=0截得的弦最短,则直线l的方程是x-y+1=0.

查看答案和解析>>

同步练习册答案