精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的前n项和为Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,数列{cn}的前n项和为Tn,求Tn及使不等式${T_n}<\frac{k}{2014}$对一切n都成立的最小正整数k的值;
(3)设$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1,l∈{N^*})\\{b_n}(n=2l,n∈{N^*})\end{array}\right.$问是否存在m∈N+,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,请说明理由.

分析 (1)由数列的前n项和结合an=Sn-Sn-1(n≥2)求得数列{an}的通项公式,再由bn+2-2bn+1+bn=0,可得{bn}为等差数列,由已知求出公差,代入等差数列的通项公式得答案;
(2)把数列{an},{bn}的通项公式代入${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,然后利用裂项相消法求和,可得使不等式${T_n}<\frac{k}{2014}$对一切n都成立的最小正整数k的值;
(3)分m为偶数和奇数分类分析得答案.

解答 解:(1)由Sn=$\frac{1}{2}$n2+$\frac{11}{2}$n.
故当n≥2时,an=Sn-Sn-1=($\frac{1}{2}$n2+$\frac{11}{2}$n)-[$\frac{1}{2}$(n-1)2+$\frac{11}{2}$(n-1)]=n+5.
n=1时,a1=S1=6,而当n=1时,n+5=6,
∴an=n+5(n∈N*),
又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn (n∈N*),
∴{bn}为等差数列,于是$\frac{{9({b_3}+{b_7})}}{2}$=153.
而b3=11,故b7=23,d=$\frac{23-11}{7-3}$=3,
因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*);
(2)cn=$\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$
=$\frac{3}{[2(n+5)-11][(2(3n+2)-1]}$
=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$.
∴Tn=c1+c2+…+cn=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+$({\frac{1}{2n-1}-\frac{1}{2n+1}})$]=$\frac{1}{2}({1-\frac{1}{2n+1}})$=$\frac{n}{2n+1}$.
易知Tn单调递增,由Tn<$\frac{k}{2014}$,得k>2014Tn,而Tn→$\frac{1}{2}$,故k≥1007,∴kmin=1007;
(3)$f(n)=\left\{\begin{array}{l}n+5,(n=2l-1,l∈{N^*})\\ 3n+2,(n=2l,l∈{N^*}).\end{array}\right.$,
①当m为奇数时,m+15为偶数.
此时f(m+15)=3(m+15)+2=3m+47,5f(m)=5(m+5)=5m+25,
∴3m+47=5m+25,m=11.
②当m为偶数时,m+15为奇数.
此时f(m+15)=m+15+5=m+20,5f(m)=5(3m+2)=15m+10.
∴m+20=15m+10,
m=$\frac{5}{7}$∉N*(舍去).
综上,存在唯一正整数m=11,使得f(m+15)=5f(m)成立.

点评 本题考查数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,考查数列的函数特性,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.南山中学为自主招生考试招募30名志愿者(编号分别是1,2,…,30号),现从中任意选取6人按编号大小分成两组分别到实验校区、南山本部工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一地点的选取种数是60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.证明函数f(x)=x8-x5+x2-x+1的值恒为正值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α的终边过点P(-4m,3m)(m>0),则2sinα+cosα的值是(  )
A.1B.$\frac{2}{5}$C.$-\frac{2}{5}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在直角坐标系中,圆锥曲线C:$\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t为参数)的焦点坐标是(  )
A.(±1,0)B.(±2,0)C.$(±2\sqrt{2},0)$D.(±4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sinx+ex+x2013,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1=fn′(x),则f2014(x)=(  )
A.sinx+exB.cosx+exC.-sinx+exD.-cosx+ex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=|tanx|的周期和对称轴分别为(  )
A.π,x=$\frac{kπ}{2}$(k∈Z)B.$\frac{π}{2}$,x=kπ(k∈Z)C.π,x=kπ(k∈Z)D.$\frac{π}{2}$,x=$\frac{kπ}{2}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数)被曲线x2-y2=1截得的弦长为(  )
A.2$\sqrt{10}$B.$2\sqrt{7}$C.$\sqrt{10}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若lgx有意义,则函数y=x2+3x-5的值域是(  )
A.[-$\frac{29}{4}$,+∞)B.(-$\frac{29}{4}$,+∞)C.[-5,+∞)D.(-5,+∞)

查看答案和解析>>

同步练习册答案