| A. | 2$\sqrt{10}$ | B. | $2\sqrt{7}$ | C. | $\sqrt{10}$ | D. | $\sqrt{7}$ |
分析 将直线的参数方程,代入曲线x2-y2=1,利用参数几何意义,即可求弦长.
解答 解:直线l的参数方程$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数),代入x2-y2=1,可得2t2-4t-3=0,
设方程的根为t1,t2,∴t1+t2=2,t1t2=-$\frac{3}{2}$,
∴曲线C被直线l截得的弦长为|t1-t2|=$\sqrt{4-4×(-\frac{3}{2})}$=$\sqrt{10}$.
故选:C.
点评 本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com