精英家教网 > 高中数学 > 题目详情
2.直线$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数)被曲线x2-y2=1截得的弦长为(  )
A.2$\sqrt{10}$B.$2\sqrt{7}$C.$\sqrt{10}$D.$\sqrt{7}$

分析 将直线的参数方程,代入曲线x2-y2=1,利用参数几何意义,即可求弦长.

解答 解:直线l的参数方程$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数),代入x2-y2=1,可得2t2-4t-3=0,
设方程的根为t1,t2,∴t1+t2=2,t1t2=-$\frac{3}{2}$,
∴曲线C被直线l截得的弦长为|t1-t2|=$\sqrt{4-4×(-\frac{3}{2})}$=$\sqrt{10}$.
故选:C.

点评 本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.方程x2-mnx+m+n=0有整数根,且m.n为自然数,则m、n的有几对,试求出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,数列{cn}的前n项和为Tn,求Tn及使不等式${T_n}<\frac{k}{2014}$对一切n都成立的最小正整数k的值;
(3)设$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1,l∈{N^*})\\{b_n}(n=2l,n∈{N^*})\end{array}\right.$问是否存在m∈N+,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,内角A,B,C所对的边分别a,b,c.已知a≠b,c=$\sqrt{3}$,$\sqrt{3}{cos^2}A-\sqrt{3}{cos^2}$B=sinAcosA-sinBcosB.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA=$\frac{4}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用“五点法”画函数y=-2+sinx(x∈[0,2π])的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列直线的方程:
(1)曲线y=x3+x2+1在P(-1,1)处的切线;
(2)曲线y=x2过点P(3,5)的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线l:y=kx+1被圆C:x2+y2-2x-3=0截得的弦最短,则直线l的方程是x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.方程:log2(x2-3)=log2(6x-10)-1的解为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知一个几何体的三视图如图所示,若该几何体外接球的表面积为8π,则h=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案