精英家教网 > 高中数学 > 题目详情
11.方程:log2(x2-3)=log2(6x-10)-1的解为2.

分析 利用对数函数的基本运算法则直接求解,但要注意:对数的真数要大于0.

解答 解:由log2(x2-3)=log2(6x-10)-1
⇒log2(x2-3)-log2(6x-10)=-1
⇒$lo{g}_{2}(\frac{{x}^{2}-3}{6x-10})=lo{g}_{2}\frac{1}{2}$
∴x2-3=3x-5
解得:x=1或x=2
∵x2-3>0,6x-10>0
∴x=2
故答案为:2.

点评 本题考查了对数函数的基本运算和对数的真数要大于0才有意义.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知角α的终边过点P(-4m,3m)(m>0),则2sinα+cosα的值是(  )
A.1B.$\frac{2}{5}$C.$-\frac{2}{5}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$\left\{{\begin{array}{l}{x=2+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数)被曲线x2-y2=1截得的弦长为(  )
A.2$\sqrt{10}$B.$2\sqrt{7}$C.$\sqrt{10}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图的算法语句输出结果是2,则输入的x值是(  )
A.0B.2C.-1或2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线W:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1(y≥0),直线l:y=kx+1与曲线W交于A,D两点,A,D两点在x轴上的射影分别为点B,C.
(1)当点B坐标为(-1,0)时,求k的值;
(2)记△OAD的面积为S1,四边形ABCD的面积为S2
(i)若S1=$\frac{2\sqrt{6}}{3}$,求线段AD的长度;
(ii)求证:$\frac{{S}_{1}}{{S}_{2}}≥\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆C过坐标原点,面积为2π,且与直线l:x-y+2=0相切,则圆C的方程是(  )
A.(x+1)2+(y+1)2=2B.(x-1)2+(y-1)2=2或(x+1)2+(y-1)2=2
C.(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若lgx有意义,则函数y=x2+3x-5的值域是(  )
A.[-$\frac{29}{4}$,+∞)B.(-$\frac{29}{4}$,+∞)C.[-5,+∞)D.(-5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求导:
(1)y=$\frac{1}{x}$;
(2)y=x3+2x2+3x+1;
(3)y=x2ex
(4)y=$\frac{12x}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次抽样调查中测得样本的5个样本点,数值如表:
x9.513.517.521.525.5
y642.82.42.2
(1)画散点图,并根据散点图判断,y=bx+a与y=$\frac{b}{x}$+a那一个适宜作为y关于x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)中判断结果及表中数据,求出y关于x的回归方程;
(3)根据(2)中所求回归方程,估计x=40时的y值(精确到小数后1位).
参考数据:①
$\overline{x}$$\overline{W}$$\overline{y}$$\sum_{I=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$(xi-$\overline{x}$)2$\sum_{I=1}^{5}$(Wi-$\overline{W}$)(yi-$\overline{y}$)$\sum_{I=1}^{5}$((Wi-$\overline{W}$)2
17.50.063.5-36.81600.1650.003
表中Wi=$\frac{1}{{x}_{i}}$,$\overline{W}$=$\frac{1}{5}$$\sum_{i=1}^{5}$Wi
②由最小二乘法,回归方程y=bx+a中的b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

同步练习册答案