精英家教网 > 高中数学 > 题目详情
3.南山中学为自主招生考试招募30名志愿者(编号分别是1,2,…,30号),现从中任意选取6人按编号大小分成两组分别到实验校区、南山本部工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一地点的选取种数是60.

分析 根据题意,分析可得要“确保6号、15号与24号同时入选并被分配到同一地点”,则除6、15、24号之外的另外三人的编号必须都大于25或都小于6号,则先分另外三人的编号必须“都大于25”或“都小于6号”这2种情况讨论选出其他三人的情况,再将选出2组进行全排列,对应实验校区、南山本部;由分步计数原理计算可得答案.

解答 解:根据题意,要“确保6号、15号与24号同时入选并被分配到同一地点”,则除6、15、24号之外的另外一组三人的编号必须都大于25或都小于6号,
则分2种情况讨论选出的情况:
①、如果另外三人的编号都大于25,则需要在编号为25、26、27、28、29、30的6人中,任取3人即可,有C63=20种情况,
②、如果另外三人的编号都小于6,则需要在编号为1、2、3、4、5的5人中,任取3人即可,有C53=10种情况,
选出剩下3人有20+10=30种情况,
再将选出的2组进行全排列,对应实验校区、南山本部,有A22=2种情况,
则“确保6号、15号与24号同时入选并被分配到同一地点”的选取种数为30×2=60种;
故答案为:60.

点评 本题考查排列组合的应用,解题的关键是分析如何“确保6号、15号与24号同时入选并被分配到同一地点”,进而确定分步、分类讨论的依据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为(  )
A.20B.15C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a,b是关于t的方程t2cosθ+t sinθ=0的两个不等实数根,则过A(a,a2),B(b,b2)两点的直线与双曲线$\frac{{x}^{2}}{co{s}^{2}θ}$-$\frac{{y}^{2}}{si{n}^{2}θ}$=1的公共点的个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=|x-1|-|x-m|.
(Ⅰ)若m=2,解不等式f(x)≥1;
(Ⅱ)如果?x∈R,f(x)≤5,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学有甲乙两个文科班进行数学考试,按照大于或等于120分为优秀,120分以下为非优秀统计成绩后,得到如下列联表:
优秀非优秀合计
20525
101525
合计302050
(1)用分层抽样的方法在优秀的学生中抽6人,其中甲班抽多少人?
(2)计算出统计量k2,能否有95%的把握认为“成绩与班级有关”?
下面的临界值表代参考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于任意两个复数z1=x1+y1i,z2=x2+y2i(其中x1,y1,x2,y2∈R),定义运算⊙为:z1⊙z2=x1x2+y1y2,设非零复数ω1,ω2满足ω1⊙ω2=0,ω1,ω2在平面直角坐标系中对应的点分别为W1,W2,那么在△W1OW2(其中O为坐标原点)中,∠W1OW2的大小为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=x-ex的增区间为(  )
A.(1,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.方程x2-mnx+m+n=0有整数根,且m.n为自然数,则m、n的有几对,试求出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{11}{2}n$.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设${c_n}=\frac{3}{{(2{a_n}-11)(2{b_n}-1)}}$,数列{cn}的前n项和为Tn,求Tn及使不等式${T_n}<\frac{k}{2014}$对一切n都成立的最小正整数k的值;
(3)设$f(n)=\left\{\begin{array}{l}{a_n}(n=2l-1,l∈{N^*})\\{b_n}(n=2l,n∈{N^*})\end{array}\right.$问是否存在m∈N+,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

同步练习册答案