设函数.
(1)若曲线在点处与直线相切,求a,b的值;
(2)求函数的单调区间.
科目:高中数学 来源: 题型:解答题
(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数为自然对数的底数).
(1)求曲线在处的切线方程;
(2)若是的一个极值点,且点,满足条件:.
(ⅰ)求的值;
(ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com