精英家教网 > 高中数学 > 题目详情

设函数.
(1)若曲线在点处与直线相切,求a,b的值;
(2)求函数的单调区间.

(1);(2).

解析试题分析:(1)首先对求导,得,利用导数的几何意义求出和切点的意义可得,可得,即可解出a,b;(2)根据,就方程是否有解,利用展开讨论,得出单调区间.
解:(1)∵
因为曲线在点处与直线相切,
,(2分)即解得,  (6分
(2)∵
,即
函数在(-∞,+∞)上单调递增(8分)
,即,此时的两个根为

时,  (11分)
时,单增区间为当
单减区间为  (13分)
考点:1.导数的几何意义;2.导数研究函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)证明函数上是增函数;
(2)用反证法证明方程没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调增区间;
(2)若,求函数在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(1)求曲线处的切线方程;
(2)若的一个极值点,且点满足条件:.
(ⅰ)求的值;
(ⅱ)求证:点是三个不同的点,且构成直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证

查看答案和解析>>

同步练习册答案