精英家教网 > 高中数学 > 题目详情
已知二次函数y=7x2-(k+13)x+k2-k-2与x轴有两个交点A(α,0)、B(β,0),若0<α<1,1<β<2,求实数k的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:由f(x)=7x2-(k+13)x+k2-k-2的图象与x轴的两个交点分别在开区间(0,1)与(1,2)上,得不等式组,解不等式可求.
解答: 解:由f(x)=7x2-(k+13)x+k2-k-2的图象与x轴的两个交点分别在开区间(0,1)与(1,2)上,
f(0)=k2-k-2>0
f(1)=k2-2k-8<0
f(2)=k2-3k>0

解不等式可得,
k>2或k<-1
-2<k<4
k>3或k<0

∴3<k<4或-2<k<-1
点评:本题主要考查了二次函数的实根分布问题的应用,解题的关键是灵活利用二次函数的图象及结合图象的性质进行求解,属于基础试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,y=f(x-2)是偶函数,且f(x)在[-4,-2]上是增函数,则f(-3.5),f(-1),f(0)的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式-1≤f(2x-1)≤3的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知事件在矩ABCD的边CD上随意取一点P,使得△APB的最大边是AB发生的概率为
1
2
,则
AD
AB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一组数x1,x2,…,xn的方差是4,则2x1-1,2x2-1,…,2xn-1的标准差是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记S=1!+2!+3!+…+99!,则S的个位数字是(  )
A、9B、5C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,若a3=4,S9-S6=27,则该数列的公差d等于(  )
A、-
6
5
B、-1
C、
6
5
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-3x,x∈[a-
1
2
,a+
1
2
],a∈R.设集合M={(m,f(n))|m,n∈[a-
1
2
,a+
1
2
]},若M中的所有点围成的平面区域面积为S,则S的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx-cos2x+a-
3
a
+1,a∈R,a≠0.
(1)若对任意x∈R,都有f(x)≤0,求a的取值范围;
(2)若a≥2,且存在x∈R,使得f(x)≤0,求a的取值范围.

查看答案和解析>>

同步练习册答案