精英家教网 > 高中数学 > 题目详情
4.若直线y=3x上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y+4>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,则实数m的取值范围是(  )
A.(-1,+∞)B.[-1,+∞)C.(-∞,-1)D.(-∞,-1)

分析 由题意作出其平面区域,先解出点A的坐标,再结合图象写出实数m的取值范围即可.

解答 解:由题意作出其平面区域,

结合图象可得,
$\left\{\begin{array}{l}{y=3x}\\{y=-x-4}\end{array}\right.$,
解得,A(-1,-3);
故m>-1;
故选A.

点评 本题考查了简单线性规划,作图要细致认真,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设m是一个非负整数,m的个位数记作G(m),如G(2015)=5,G(16)=6,G(0)=0,则称这样的函数为尾数函数,给出下列有关尾数函数的结论:
①G(a-b)=G(a)-G(b);
②?a、b、c∈N,若a-b=10c,都有G(a)=G(b);
③G(a•b•c)=G(G(a)•G(b)•G(c));
则正确的结论的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.扣人心弦巴西世界足球杯已落下了帷幕,为了解市民对该届世界杯的关注情况,某市足球协会针对该市市民组织了一次随机调查,所抽取的样本容量为120,调查结果如下:
收视情况看直播看转播不看
人数(单位:人)604020
(1)若从这120人中按照分层抽样的方法随机抽取6人进行座谈,再从这6人中随机抽取3人颁发幸运礼品,求这3人中至少有1人为“看直播“的概率
(2)现从(1)所抽取的6人的问卷中每次抽取1份,且不重复抽取,直到确定出所有为看直播的问卷为止,记要抽取的次数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知角α的终边过点(2,1),则sin2α等于(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{a+lnx}{x}$(a∈R)
(Ⅰ)若a=4,求曲线f(x)在点(1,4)处的切线方程; 
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{4}$=1,F1、F2为椭圆的左、右焦点,A、B为椭圆的左、右顶点,点P为椭圆上异于A、B的动点,且直线PA、PB的斜率之积为-$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若动直线l与椭圆C有且仅有一个公共点,试问:在x轴上是否存在两个定点,使得这两个定点到直线l的距离之积为4?若存在,求出两个定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的首项为a1=5,前n项和为Sn,且Sn+1=2Sn+n+5,求{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求圆的极坐标方程:
(1)圆心在A(1,$\frac{π}{4}$),半径为1的圆;
(2)圆心在(a,$\frac{π}{2}$),半径为a的圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sinωxcosωx+$\sqrt{3}$cos2ωx+$\frac{3}{2}$(ω>0),其两条相邻对称轴之间的距离等于$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式
(Ⅱ)若对?x∈[-$\frac{π}{12}$,0],都有|f(x)-m|≤1,求实数m的取值范围.

查看答案和解析>>

同步练习册答案