【题目】已知函数
(
),将
的图象向左平移
个单位长度后得到
的图象,且
在区间
内的最大值为
.
(1)求实数
的值;
(2)在
中,内角
,
,
的对边分别是
,
,
,若
,且
,求
的周长
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3-3ax+e,g(x)=1-lnx,其中e为自然对数的底数.
(I)若曲线y=f(x)在点(1,f(1))处的切线与直线l:x+2y=0垂直,求实数a的值;
(II)设函数F(x)=-x[g(x)+
x-2],若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;
(III)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0). 若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理是合情推理的是
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n-2)·180°___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)求函数
在
上的最小值;
(2)对一切
,
恒成立,求实数
的取值范围;
(3)探讨函数
是否存在零点?若存在,求出函数
的零点;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个结论:
(1)如果
的展开式中各项系数之和为128,则展开式中
的系数是-21;
(2)用相关指数
来刻画回归效果,
的值越大,说明模型的拟合效果越差;
(3)若
是
上的奇函数,且满足
,则
的图象关于
对称;
(4)一个篮球运动员投篮一次得3分的概率为
,得2分的概率为
,不得分的概率为
,且
,已知他投篮一次得分的数学期望为2,则
的最小值为
;
其中正确结论的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx为偶函数,数列{an}满足an+1=2f(an-1)+1,且a1=3,an>1.
(1)设bn=log2(an-1),证明:数列{bn+1}为等比数列;
(2)设cn=nbn,求数列{cn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com