| A. | $\frac{\sqrt{17}+4}{4}$ | B. | $\frac{\sqrt{17}+3}{4}$ | C. | $\frac{\sqrt{17}+2}{4}$ | D. | $\frac{\sqrt{17}+1}{4}$ |
分析 设P的坐标为(m,$\sqrt{m}$),求函数导数,利用导数的几何意义以及切线斜率公式建立方程关系求出m=4,根据双曲线的定义求出a,c即可.
解答
解:设P的坐标为(m,$\sqrt{m}$),左焦点F(-4,0),
函数的导数f′(x)=$\frac{1}{2\sqrt{x}}$,则在P处的切线斜率k=f′(m)=$\frac{1}{2\sqrt{m}}$=$\frac{\sqrt{m}}{m+4}$,
即m+4=2m,得m=4,
则P(4,2),设右焦点为A(4,0),
则2a=|PF|-|PA|=$\sqrt{64+4}-\sqrt{0+4}$=2($\sqrt{17}-1$),
即a=$\sqrt{17}-1$,
∵c=4,
∴双曲线的离心率e=$\frac{c}{a}$=$\frac{\sqrt{17}+1}{4}$,
故选:D
点评 本题考查双曲线的离心率的求法,根据导数的几何意义,建立切线斜率关系,求出a,c是解决本题的关键.考查运算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17}{15}$ | B. | $\frac{15}{17}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6\sqrt{41}}{41}$ | B. | $\frac{6\sqrt{31}}{31}$ | C. | $\frac{3\sqrt{41}}{41}$ | D. | $\frac{3\sqrt{31}}{31}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com