精英家教网 > 高中数学 > 题目详情

设函数.
(1)若,求函数的单调区间;
(2)若函数在定义域上是单调函数,求的取值范围;
(3)若,证明对任意,不等式都成立。

解(1),定义域
时,.
故函数的减区间是(-1,1),增区间是(1,+).
(2)∵,又函数在定义域是单调函数,
上恒成立。
上恒成立,
恒成立,由此得
恒成立,
没有最小值,不存在实数使恒成立。
综上所知,实数b的取值范围是.
(3)当时,函数,令函数 ,

时,函数上单调递减,
恒成立。

,故结论成立。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设0≤x≤2,求函数y=的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知奇函数f(x)=
(1)求实数m的值,并在给出的直角坐标系中画出y=f(x)的图象;
(2)若函数f(x)在区间[-1,a-2]上单调递增,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的零点;
(2)在坐标系中画出函数的图象;
(3)讨论方程解的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若集合
(Ⅰ)若,求集合
(Ⅱ)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数满足:①定义域是; ②当时,
③对任意,总有
(1)求出的值;
(2)判断函数的单调性,并用单调性的定义证明你的结论;
(3)写出一个满足上述条件的具体函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业生产甲、乙两种产品, 根据市场调查与预测, 甲产品的利润与投资成正比, 其关系如图1, 乙产品的利润与投资的算术平方根成正比, 其关系如图2 (注: 利润与投资的单位: 万元).
(Ⅰ) 分别将甲、乙两种产品的利润表示为投资的函数关系式;
(Ⅱ) 该企业筹集了100万元资金投入生产甲、乙两种产品, 问: 怎样分配这100万元资金, 才能使企业获得最大利润, 其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为(单位:分),学生的接受能力为值越大,表示接受能力越强),
  
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义,且满足对任意
有:
的值。
判断的奇偶性并证明
如果,且上是增函数,求的取值范围。

查看答案和解析>>

同步练习册答案