精英家教网 > 高中数学 > 题目详情
4.设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)当a=0时,判断并证明f(x)奇偶性;
(2)求f(x)的最小值.

分析 (1)当a=0时,利用函数奇偶性的定义进行判断即可;
(2)当x≤a时,f(x)=x2-x+a+1=(x-$\frac{1}{2}$)2+a+$\frac{3}{4}$,分a>$\frac{1}{2}$时和a≤$\frac{1}{2}$时两种情况,分别求得函数f(x)的最小值.
②当x>a 时,f(x)=x2+x-a+1=(x+$\frac{1}{2}$)2-a+$\frac{3}{4}$,分a>-$\frac{1}{2}$时和当a≤-$\frac{1}{2}$时两种情况,分别求得函数f(x)的最小值.

解答 解:(1)对于函数 f(x)=x2+|x-a|+1,
当a=0时,f(x)=x2+|x|+1为偶函数.
(2)①当x≤a时,f(x)=x2-x+a+1=(x-$\frac{1}{2}$)2+a+$\frac{3}{4}$,
若a>$\frac{1}{2}$时,函数f(x)的最小值为f($\frac{1}{2}$)=a+$\frac{3}{4}$;
若a≤$\frac{1}{2}$时,函数f(x)的最小值为f(a)=a2+1.
②当x>a 时,f(x)=x2+x-a+1=(x+$\frac{1}{2}$)2-a+$\frac{3}{4}$,
若a>-$\frac{1}{2}$时,函数f(x)的最小值为f(a)=a2+1;
若a≤-$\frac{1}{2}$时,函数f(x)的最小值为f(-$\frac{1}{2}$)=-a+$\frac{3}{4}$.
由a2+1>a+$\frac{3}{4}$,a2+1>-a+$\frac{3}{4}$,
综上可得,a>$\frac{1}{2}$时,函数f(x)的最小值为a+$\frac{3}{4}$;
a≤-$\frac{1}{2}$时,函数f(x)的最小值为-a+$\frac{3}{4}$;
当-$\frac{1}{2}$<a≤$\frac{1}{2}$,函数f(x)的最小值为a2+1.

点评 本题主要考查带有绝对值的函数,函数的奇偶性的判断,求二次函数的最值,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(0,2$\sqrt{3}$),$\overrightarrow{b}$=(1,$\sqrt{3}$).$\overrightarrow{e}$是与$\overrightarrow{b}$同向的单位向量,则$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影为(  )
A.-3B.$\sqrt{3}$C.-$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知三点A(0,2),B(-3,0),C(4,0),矩形EFGH的顶点E、H分别在△ABC的边AB、AC上,F、G都在边BC上,不管矩形EFGH如何变化,它的对角线EG、HF的交点P恒在一条定直线l上,那么直线l的方程是2x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,圆C:x2+y2=2,Q(3,0),圆外一动点M到圆C的切线长与|MQ|的比值为$\sqrt{2}$
(1)求动点M的轨迹方程;
(2)若斜率为k且过点P(0,2)的直线l和动点M的轨迹和交于A,B两点,是否存在常数k,使$\overrightarrow{OA}+\overrightarrow{OB}$与$\overrightarrow{PQ}$共线?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,平面内有三个向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为30°,且|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,|$\overrightarrow{OC}|=2\sqrt{3}$,若$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$(x,y∈R),则(x,y)=(4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题:?x∈R,ln(ex-1)<0的否定是(  )
A.?x∈R,ln(ex-1)>0B.?x∈R,ln(ex-1)≥0C.?x∈R,ln(ex-1)<0D.?x∈R,ln(ex-1)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线方程为:x=$\frac{1}{4}$y2,其准线方程为x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一射手对同一目标进行4次射击,且射击结果之间互不影响,已知至少命中一次的概率为$\frac{80}{81}$,则此射手的命中率为(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点C、D、E是线段AB的四等分点,O为直线AB外的任意一点,若$\overrightarrow{OC}$+$\overrightarrow{OD}$+$\overrightarrow{OE}$=m($\overrightarrow{OA}$+$\overrightarrow{OB}$),则实数 m的值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案