精英家教网 > 高中数学 > 题目详情
13.一射手对同一目标进行4次射击,且射击结果之间互不影响,已知至少命中一次的概率为$\frac{80}{81}$,则此射手的命中率为(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{8}{9}$

分析 设该射手每次的命中率为p,由对立事件及n次独立重复试验的概率计算公式能求出此射手的命中率.

解答 解:设该射手每次的命中率为p,
∵射手对同一目标进行4次射击,且射击结果之间互不影响,至少命中一次的概率为$\frac{80}{81}$,
∴1-${C}_{4}^{0}(1-p)^{4}$=$\frac{80}{81}$,
解得p=$\frac{2}{3}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件及n次独立重复试验的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.下列四种说法中,正确的个数有②③
①命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
②“命题P∨Q为真”是“命题P∧Q为真”的必要不充分条件;
③?m∈R,使f(x)=m${x^{{m^2}+2m}}$是幂函数,且在(0,+∞)上是单调递增;
④不过原点(0,0)的直线方程都可以表示成$\frac{x}{a}+\frac{y}{b}$=1;
⑤在线性回归分析中,相关系数r的值越大,变量间的相关性越强.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)当a=0时,判断并证明f(x)奇偶性;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,b>0,试比较M=$\sqrt{a}$+$\sqrt{b}$与N=$\sqrt{a+b}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C1的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(其中θ为参数),点P(-1,0),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ-ρsinθ+1=0.
(1)分别写出曲线C1的普通方程与直线C2的参数方程;
(2)若曲线C1与直线C2交于A,B两点,求|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我们知道,如果集合A⊆U,那么U的子集A的补集为∁UA={x|x∈U,且x∉A},类似地对于集合A、B,我们把集合{x|x∈A且x∉B}叫做A与B的差集,记作A-B.例如A={1,2,3,5,8},B={4,5,6,7,8}.则A-B={1,2,3}.B-A={4,6,7}.
据此,回答以下问题:
(1)补集与差集有什么异同点?
(2)若U是高一(1)班全体同学组成的集合,A是高一(1)班全体女同学组成的集合,求U-A及∁UA.
(3)在下列各图中,用阴影表示集合A-B.

(4)如果A-B=∅,那么A与B之间具有怎样的关系?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是(  )
A.α⊥β,m?α⇒m⊥βB.α⊥β,m?α,n?β⇒m⊥n
C.m∥n,n⊥α⇒m⊥αD.m?α,n?α,m∥β,n∥β⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知抛物线C:y2=4x的焦点为F、O为坐标原点,点P在抛物线C上,且PF⊥OF,则|$\overrightarrow{OF}$-$\overrightarrow{PF}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2.过椭圆右焦点且垂直于x轴的直线与椭圆交于A,B两点(点A在点B上方),且|AB|=1,点P是椭圆C上位于x轴上方的动点,且|F1P|+|F2P|=4.
(I)求椭圆C的方程;
(2)若直线PF1,PF2与直线y=3分别交于G,H两点,求线段GH长度的最小值;在线段GH长度取得最小值的情况下,若点T是椭圆C上一点,求△TPF1面积的最大值.

查看答案和解析>>

同步练习册答案