分析 (1)利用同角三角函数的关系消去参数得出C1的普通方程,把C2的极坐标方程先化成普通方程求出倾斜角和一个特殊点,再得出标准参数方程;
(2)把直线的标准参数方程代入C1的普通方程,利用根与系数的关系和参数的几何意义解出.
解答 解:(1)曲线C1的普通方程为$:\frac{x^2}{4}+\frac{y^2}{3}=1$,
直线C2的普通方程为x-y+1=0,可知该直线过点P(-1,0),倾斜角为45°,
所以直线C2的参数方程为$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数).
(2)将$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$代入$:\frac{x^2}{4}+\frac{y^2}{3}=1$,得$7{t^2}-6\sqrt{2}t-18=0$,
设A,B对应的参数分别为t1,t2,则${t_1}•{t_2}=-\frac{18}{7}$,
于是|PA|•|PB|=$|{t_1}•{t_2}|=\frac{18}{7}$.
点评 本题考查了简单曲线的参数方程与普通方程的转化,参数的几何意义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | log23 | B. | 0 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com