精英家教网 > 高中数学 > 题目详情
8.已知曲线C1的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(其中θ为参数),点P(-1,0),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ-ρsinθ+1=0.
(1)分别写出曲线C1的普通方程与直线C2的参数方程;
(2)若曲线C1与直线C2交于A,B两点,求|PA|•|PB|.

分析 (1)利用同角三角函数的关系消去参数得出C1的普通方程,把C2的极坐标方程先化成普通方程求出倾斜角和一个特殊点,再得出标准参数方程;
(2)把直线的标准参数方程代入C1的普通方程,利用根与系数的关系和参数的几何意义解出.

解答 解:(1)曲线C1的普通方程为$:\frac{x^2}{4}+\frac{y^2}{3}=1$,
直线C2的普通方程为x-y+1=0,可知该直线过点P(-1,0),倾斜角为45°,
所以直线C2的参数方程为$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数).
(2)将$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$代入$:\frac{x^2}{4}+\frac{y^2}{3}=1$,得$7{t^2}-6\sqrt{2}t-18=0$,
设A,B对应的参数分别为t1,t2,则${t_1}•{t_2}=-\frac{18}{7}$,
于是|PA|•|PB|=$|{t_1}•{t_2}|=\frac{18}{7}$.

点评 本题考查了简单曲线的参数方程与普通方程的转化,参数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.定积分${∫}_{\frac{π}{4}}^{\frac{9π}{4}}$$\sqrt{2}$cos(2x+$\frac{π}{4}$)dx的值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,平面内有三个向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为30°,且|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,|$\overrightarrow{OC}|=2\sqrt{3}$,若$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$(x,y∈R),则(x,y)=(4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线方程为:x=$\frac{1}{4}$y2,其准线方程为x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,则z=log2(2x-y)的最大值为(  )
A.log23B.0C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一射手对同一目标进行4次射击,且射击结果之间互不影响,已知至少命中一次的概率为$\frac{80}{81}$,则此射手的命中率为(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=(  )
A.0.4B.0.5C.0.6D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈=(-2,0)时,f(x)=2x+$\frac{1}{2}$,则f(2017)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知2ccosB=2a-$\sqrt{3}$b.
(Ⅰ)求C;
(Ⅱ)若a=2,△ABC的面积为$\sqrt{3}$,求c.

查看答案和解析>>

同步练习册答案