精英家教网 > 高中数学 > 题目详情
已知函数f(x)的图象如图所示,f′(x)是f(x)的导函数,则下列数值排序正确的是(  )
A、f′(2)<f′(3)<f(3)-f(2)
B、f′(3)<f(3)-f(2)<f′(2)
C、f′(3)<f′(2)<f(3)-f(2)
D、f(3)-f(2)<f′(2)<f′(3)
考点:导数的运算
专题:导数的概念及应用
分析:由题意,作出f′(3)、f(3)-f(2)、f′(2)所表示的几何意义,从而求解.
解答: 解:如下图:

f′(3)、f(3)-f(2)、f′(2)分别表示了直线n,m,l的斜率,
故0<f′(3)<f(3)-f(2)<f′(2),
故选B.
点评:本题考查了学生的作图能力及对导数的几何意义的理解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若原点O到直线ax+by+c=0的距离为1,则有(  )
A、c=1
B、c=
a2+b2
C、c2=a2+b2
D、c=a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(1)求证:AF∥平面BCE;
(2)求证:AC⊥平面BCE;
(3)求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥1
x+y-4≤0
kx-y≤0
所表示的平面区域是面积为1的直角三角形,则z=x-2y的最大值是(  )
A、-5B、-2C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+
π
4
)=
1
2
,α∈(0,π),则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F(1,0),则以焦点为圆心,且与y轴相切的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-2,2]时,求函数y=f(x-1)+f(x+1)的最小值及取最小值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=
1
2
n2-2n(n∈N*),数列{bn}满足bn=
an+1
an

(1)求数列{an}的通项公式;
(2)计算了b1,b2,b3,并猜想数列{bn}中的最大项和最小项(不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

某班对喜爱打篮球是否与性别有关进行了调查,以本班的50人为对象进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合  计
男生5
女生10
合计50
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为
3
5

(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.9%的把握认为喜爱打篮球与性别有关?说明你的理由;
(Ⅲ)已知不喜爱打篮球的5位男生中,A1,A2,A3喜欢踢足球,B1,B2喜欢打乒乓球,现再从喜欢踢足球、喜欢打乒乓球的男生中各选出1名同学进行其他方面的调查,求A1和B1至少有一个被选中的概率.
附:
P(K2≥k)0.050.010.001
k3.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步练习册答案