| A. | 1 | B. | 10 | C. | 32 | D. | 100 |
分析 由题意列关于等比数列的首项和公比的方程组,求解方程组得答案.
解答 解:在等比数列{an}中,公比q≠1,
由a1+a2,a3+a4,a5+a6成等差数列,且a1+a2+a3=1,
得$\left\{\begin{array}{l}{2({a}_{3}+{a}_{4})={a}_{1}+{a}_{2}+{a}_{5}+{a}_{6}}\\{{a}_{1}+{a}_{2}+{a}_{3}=1}\end{array}\right.$,即:
$\left\{\begin{array}{l}{2{a}_{1}({q}^{2}+{q}^{3})={a}_{1}(1+q+{q}^{4}+{q}^{5})}\\{{a}_{1}(1+q+{q}^{2})=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=-1}\end{array}\right.$.
∴数列{${{a}_{n}}^{2}$}是常数列1,1,1,…,
则a12+a22+…+a102=10.
故选:B.
点评 本题考查等比数列的通项公式,考查方程组的解法,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $[kπ-\frac{π}{3},kπ+\frac{π}{6}]$,k∈Z | B. | $[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$,k∈Z | ||
| C. | $[kπ-\frac{π}{12},kπ+\frac{π}{12}]$,k∈Z | D. | $[kπ-\frac{7π}{12},kπ-\frac{π}{12}]$,k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{4}$,$\frac{1}{4}$) | B. | (-$\frac{1}{2}$,$\frac{1}{2}$) | C. | (-2,2) | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com