精英家教网 > 高中数学 > 题目详情
11.在等比数列{an}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a102=(  )
A.1B.10C.32D.100

分析 由题意列关于等比数列的首项和公比的方程组,求解方程组得答案.

解答 解:在等比数列{an}中,公比q≠1,
由a1+a2,a3+a4,a5+a6成等差数列,且a1+a2+a3=1,
得$\left\{\begin{array}{l}{2({a}_{3}+{a}_{4})={a}_{1}+{a}_{2}+{a}_{5}+{a}_{6}}\\{{a}_{1}+{a}_{2}+{a}_{3}=1}\end{array}\right.$,即:
$\left\{\begin{array}{l}{2{a}_{1}({q}^{2}+{q}^{3})={a}_{1}(1+q+{q}^{4}+{q}^{5})}\\{{a}_{1}(1+q+{q}^{2})=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=-1}\end{array}\right.$.
∴数列{${{a}_{n}}^{2}$}是常数列1,1,1,…,
则a12+a22+…+a102=10.
故选:B.

点评 本题考查等比数列的通项公式,考查方程组的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若将f(x)的图象上所有点向右平移$\frac{π}{12}$个单位得到函数g(x)的图象,则函数g(x)的单调增区间为(  )
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$,k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$,k∈Z
C.$[kπ-\frac{π}{12},kπ+\frac{π}{12}]$,k∈ZD.$[kπ-\frac{7π}{12},kπ-\frac{π}{12}]$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义域为R的偶函数,且当x≥0时,f(x)=($\frac{1}{2}$)x,则不等式f(x)>$\frac{1}{2}$的解集为(  )
A.(-$\frac{1}{4}$,$\frac{1}{4}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{2}{3}\sqrt{2}$,且内切于圆x2+y2=9.
(1)求椭圆C的方程;
(2)过点Q(1,0)作直线l(不与x轴垂直)与该椭圆交于M、N两点,与y轴交于点R,若$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,试判断λ+μ是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{c}$|=2,则向量$\overrightarrow{a}$在向量$\overrightarrow{c}$方向上的投影为$\frac{3}{2}$,$\overrightarrow{a}$•$\overrightarrow{b}$的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设一四棱锥的体积为V,那么由各棱中点连线所组成的十面体的体积为$\frac{5V}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=AB,点M在棱PD上,PB∥平面ACM.
(1)试确定点M的位置,并说明理由;
(2)求二面角M-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若点M是以椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的短轴为直径的圆在第一象限内的一点,过点M作该圆的切线交椭圆E于P,Q两点,椭圆E的右焦点为F2,则△PF2Q的周长是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在△ABC中,D,E分别是AB,AC的中点,DM=$\frac{1}{3}$DE,若$\overrightarrow{AB}$=a,$\overrightarrow{AC}$=b.
(1)用a,b表示$\overrightarrow{BM}$;
(2)若N为线段BC上的点,且BN=$\frac{1}{3}$BC,利用向量方法证明:A,M,N三点共线.

查看答案和解析>>

同步练习册答案