精英家教网 > 高中数学 > 题目详情
20.若点M是以椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的短轴为直径的圆在第一象限内的一点,过点M作该圆的切线交椭圆E于P,Q两点,椭圆E的右焦点为F2,则△PF2Q的周长是6.

分析 方法一、设直线PQ的方程为y=kx+m(k<0,m>0),联立椭圆方程,设P(x1,y1),Q(x2,y2),运用韦达定理和弦长公式,结合直线和圆相切的条件:d=r,化简整理,可得周长;
方法二、设P(x1,y1),Q(x2,y2),运用椭圆的焦半径公式和勾股定理,化简整理即可得到所求周长.

解答 解:根据题意作出图形如图所示,
方法一、设直线PQ的方程为y=kx+m(k<0,m>0),
由$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{9}+\frac{y^2}{8}=1\end{array}\right.$得(8+9k2)x2+18kmx+9m2-72=0,
有△=(18km)2-4(8+9k2)(9m2-72)=288(9k2-m2+8)>0,
设P(x1,y1),Q(x2,y2),则${x_1}+{x_2}=\frac{-18km}{{8+9{k^2}}}$,${x_1}{x_2}=\frac{{9{m^2}-72}}{{8+9{k^2}}}$,
∴$|{PQ}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|$
=$\sqrt{1+{k^2}}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}$=$\sqrt{1+{k^2}}\sqrt{{{(\frac{-18km}{{8+9{k^2}}})}^2}-4×\frac{{9{m^2}-72}}{{8+9{k^2}}}}$
=$\sqrt{1+{k^2}}\sqrt{\frac{{4×9×8(9{k^2}-{m^2}+8)}}{{{{(8+9{k^2})}^2}}}}$.
∵直线PQ与圆x2+y2=8相切,
∴$\frac{m}{{\sqrt{1+{k^2}}}}=2\sqrt{2}$,即$m=\sqrt{8(1+{k^2})}$,
∴$|{PQ}|=-\frac{6km}{{8+9{k^2}}}$,
∵$|{P{F_2}}|=\sqrt{{{({x_1}-2)}^2}+y_1^2}$=$\sqrt{{{({x_1}-1)}^2}+8(1-\frac{x_1^2}{9})}$=$\sqrt{{{(\frac{x_1}{3}-3)}^2}}$,0<x1<3,
∴$|{P{F_2}}|=3-\frac{x_1}{3}$,同理$|{Q{F_2}}|=3-\frac{x_2}{3}$,
∴|PF2|+|QF2|+|PQ|=6-$\frac{{x}_{1}+{x}_{2}}{3}$-$\frac{6km}{8+9{k}^{2}}$=$6+\frac{6km}{{8+9{k^2}}}-\frac{6km}{{8+9{k^2}}}=6$,
因此,△PF2Q的周长是定值6.
方法二:设P(x1,y1),Q(x2,y2),
则$\frac{{{x}_{1}}^{2}}{9}$+$\frac{{{y}_{1}}^{2}}{8}$=1,|PF2|=$\sqrt{({x}_{1}-1)^{2}+{{y}_{1}}^{2}}$=$\sqrt{{{({x_1}-1)}^2}+8(1-\frac{x_1^2}{9})}$=$\sqrt{(\frac{{x}_{1}}{3}-3)^{2}}$,0<x1<3,
∴$|{P{F_2}}|=3-\frac{x_1}{3}$,又M是圆O的切点,连接OP,OM,
∴$|{PM}|=\sqrt{{{|{OP}|}^2}-{{|{OM}|}^2}}$=$\sqrt{x_1^2+y_1^2-8}$$\sqrt{x_1^2+8(1-\frac{x_1^2}{9})-8}$=$\frac{1}{3}{x_1}$,
∴$|{P{F_2}}|+|{PM}|=3-\frac{1}{3}{x_1}+\frac{1}{3}{x_1}=3$,
同理|QF2|+|QM|=3,
∴|PF2|+|QF2|+|PQ|=3+3=6,
因此,△PF2Q的周长是定值6.
故答案为:6.

点评 本题考查椭圆的定义、方程和性质,考查直线和圆相切的条件:d=r,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=ln(x+$\sqrt{a+{x}^{2}}$)为奇函数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等比数列{an}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a102=(  )
A.1B.10C.32D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若不等式a2+b2≥2kab对任意a、b∈R都成立,则实数k的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据某水文观测点的历史统计数据,得到某河流每年最高水位X(单位:米)的频率分布直方图如图:
将河流最高水位落入各组的频率作为概率,并假设每年河流最高水位相互独立.
(Ⅰ)求在未来3年里,至多有1年河流最高水位X∈[27,31)的概率(结果用分数表示);
(Ⅱ)该河流对沿河A企业影响如下:当X∈[23,27)时,不会造成影响;当X∈[27,31)时,损失10000元;当X∈[31,35]时,损失60000元.为减少损失,现有三种应对方案:
方案一:防御35米的最高水位,每年需要工程费用3800元;
方案二:防御31米的最高水位,每年需要工程费用2000元;
方案三:不采取措施;
试比较上述三种方案,哪种方案好,并请说明情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C的中心为坐标原点O,焦点在x轴上,长轴长为$2\sqrt{2}$,离心率为$\frac{\sqrt{2}}{2}$,斜率为k,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且$\overrightarrow{AP}=3\overrightarrow{PB}$.
(I)求椭圆方程;
(Ⅱ)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图三棱锥,则该三棱锥的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2.G为椭圆上异于长轴端点的一点,若△GF1F2的面积为2,且其内切圆半径为2-$\sqrt{2}$.
(1)求椭圆C的方程;
(2)直线l:y=k(x-1)(k<0)与椭圆C相交于A、B两点,点P(3,0),记直线PA,PB的斜率分别为k1、k2,当$\frac{{k}_{1}{k}_{2}}{k}$取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在三角形ABC中,AM:AB=1:3,AN:AC=1:4,BN与CM相交于P,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AP}$.

查看答案和解析>>

同步练习册答案