精英家教网 > 高中数学 > 题目详情
8.已知f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax+cos2x,若f($\frac{π}{3}$)=2,则f(-$\frac{π}{3}$)等于(  )
A.-2B.-1C.0D.1

分析 得到f(-x)=$\frac{1}{{2}^{x}+1}$-ax+cos2x=1+2cos2x-f(x),由f($\frac{π}{3}$)=2,代入求出即可.

解答 解:∵f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax+cos2x=1-$\frac{1}{{2}^{x}+1}$+ax+cos2x,
∴f(-x)=$\frac{1}{{2}^{x}+1}$-ax+cos2x=1+2cos2x-f(x),
由f($\frac{π}{3}$)=2,
则f(-$\frac{π}{3}$)=1+2cos$\frac{2π}{3}$-f($\frac{π}{3}$)=-2,
故选:A.

点评 本题考查了函数求值问题,考查三角函数问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=sin(2x+$\frac{π}{3}$)的图象向左平移φ(φ>0)个单位后关于原点对称,则φ的最小值为(  )
A.$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知四个无穷数列{(-1)n$\frac{1}{n}$},{(-1)n$\frac{1}{{2}^{n}}$},{$\frac{{3}^{n-1}}{{2}^{n+2}}$},{$\frac{1{0}^{10}}{{n}^{2}}$},当n→∞时,这四个数列极限为0的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>0,b∈R,函数f(x)=4ax2-2bx-a+b,x∈[0,1].
(1)求函数f(x)的最大值;
(2)若-1≤f(x)≤1对任意的x∈[0,1]恒成立,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列x,a1,a2,y和x,b1,y,b2都是等差数列,求$\frac{{a}_{2}-{a}_{1}}{{b}_{2}-{b}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>0,a≠1,x≠0,则${log_{a^2}}{x^2}$=(  )
A.2logaxB.logaxC.2loga|x|D.loga|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设P={x|x<1},下列关系式成立的是(  )
A.∅∈PB.0∉PC.0⊆PD.{0}⊆P

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,则输出的S的值是(  )
A.$\frac{9}{2}$B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若在区间[-1,2]中随机地取一个数x,则事件“0≤x≤2”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案