精英家教网 > 高中数学 > 题目详情
已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被轴截得的弦长为,圆C的面积小于13.
(Ⅰ)求圆C的标准方程;
(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.
(I)圆C的标准方程为:(x-1)2+y2=4;(Ⅱ)不存在这样的直线l.

试题分析:(I)用待定系数法即可求得圆C的标准方程;(Ⅱ)首先考虑斜率不存在的情况.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2).l与圆C相交于不同的两点,那么Δ>0.由题设及韦达定理可得k与x1、x2之间关系式,进而求出k的值.若k的值满足Δ>0,则存在;若k的值不满足Δ>0,则不存在.
试题解析:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知
 解得a=1或a=,                  3分
又∵S=πR2<13,
∴a=1,
∴圆C的标准方程为:(x-1)2+y2=4.                  6分
(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.
当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),
又∵l与圆C相交于不同的两点,
联立消去y得:(1+k2)x2+(6k-2)x+6=0,        9分
∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,
解得
x1+x2=,y1+ y2=k(x1+x2)+6=

假设,则

解得,假设不成立.
∴不存在这样的直线l.                   13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆心为点的圆与直线相切.

(1)求圆的标准方程;
(2)对于圆上的任一点,是否存在定点 (不同于原点)使得恒为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,MN为两圆的公共弦,一条直线与两圆及公共弦依次交于A,B,C,D,E,
求证:AB·CD=BC·DE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知圆心在轴上,半径为的圆位于轴的右侧,且与轴相切,
(Ⅰ)求圆的方程;
(Ⅱ)若椭圆的离心率为,且左右焦点为,试探究在圆上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.

(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求过两点A(1,4)、B(3,2)且圆心在直线y=0上的圆的标准方程,并判断点P(2,4)与圆的关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若圆与圆外切,则的值为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线成轴对称图形,则的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

同步练习册答案