精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|x2+2x-3<0},B={x|0<x<3},则A∩B=(  )
A.(0,1)B.(0,3)C.(-1,1)D.(-1,3)

分析 求出A中不等式的解集,找出A与B的交集即可.

解答 解:集合A={x|x2+2x-3<0}=(-3,1),B={x|0<x<3}=(0,3),则A∩B=(0,1),
故选:A

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图1,棱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将棱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,$DM=3\sqrt{2}$.

(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow c$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),$(\overrightarrow c-2\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$,则|$\overrightarrow c$|的最大值为(  )
A.0B.$\sqrt{3}$C.$\frac{\sqrt{7}+\sqrt{3}}{2}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图在直角梯形BB1C1C中,∠CC1B1=90°,BB1∥CC1,CC1=B1C1=2BB1=2,D是CC1的中点.四边形AA1C1C可以通过直角梯形BB1C1C以CC1为轴旋转得到,且二面角B1-CC1-A为120°.
(1)若点E是线段A1B1上的动点,求证:DE∥平面ABC;
(2)求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≥1}\\{3x+y≤3}\end{array}\right.$所表示的平面区域为D,若直线y-2=a(x+2)与D有公共点,则a的取值范围是$-\frac{2}{3}≤$a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.以下命题:
①“x=1”是“x2-3x+2=0”的充分不必要条件;
②命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
③对于命题p:?x>0,使得x2+x+1<0,则¬p:?x≤0,均有x2+x+1≥0
④若p∨q为假命题,则p,q均为假命题
其中正确命题的序号为①②④(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线a、b和平面α、β,下列命题中假命题的是①②③④(只填序号).
①若a∥b,则a平行于经过b的任何平面;
②若a∥α,b∥α,则a∥b;
③若a∥α,b∥β,且α⊥β,则a⊥b;
④若α∩β=a,且b∥α,则b∥a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义新运算:$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|={a_1}{a_4}-{a_2}{a_3}$,若函数$f(x)=|{\begin{array}{l}{\sqrt{3}cosx}&{-1}\\{{{sin}^2}x}&{sinx}\end{array}}|$,则下列结论不正确的是(  )
A.函数y=f(x)的最小正周期为π
B.函数y=f(x)的一个对称中心为$(\frac{7π}{12},\frac{1}{2})$
C.函数y=f(x)在区间$[0,\frac{π}{2}]$上单调递增
D.将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,所得图象对应的函数为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知f(x)为偶函数,g(x)=f(x)+x3,且g(2)=10,则g(-2)=-6.

查看答案和解析>>

同步练习册答案