精英家教网 > 高中数学 > 题目详情
3.函数y=cos(2x+$\frac{π}{3}$)的图象的一条对称轴方程是(  )
A.x=-$\frac{π}{2}$B.x=-$\frac{π}{4}$C.x=πD.x=-$\frac{π}{6}$

分析 利用余弦函数的图象的对称性,求得函数y=cos(2x+$\frac{π}{3}$)的图象的一条对称轴方程.

解答 解:对于函数y=cos(2x+$\frac{π}{3}$),令2x+$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
令k=0,可得它的图象的一条对称轴方程是x=-$\frac{π}{6}$,
故选:D.

点评 本题主要考查余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x2-2x)•lnx+ax2+2.
(Ⅰ)当a=-1时,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)设函数g(x)=f(x)-x-2,
①当a=1时,若1<x≤e,g(x)≤m恒成立,求m的取值范围
②若g(x)有且仅有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某三棱锥的正视图,侧视图,俯视图如图所示,则该三棱锥的表面积是$4+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=2px(p>0)上一点M(1,m)到其焦点的距离为4,双曲线x2-$\frac{y^2}{a}$=1的左顶点为A,若双曲线的一条渐近线与直线AM垂直,则实数a的值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c是实数且a≠0,则“-$\frac{b}{a}$>0且$\frac{c}{a}>0$”是“方程ax2+bx+c=0有两正根”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{e}^{x}}{x}$+elnx-ax在x=1处取的极值.
(Ⅰ)求实数a的值;
(Ⅱ)求证:f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x∈R+时,可得到不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{x^2}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{x^2}$≥3,由此可推广为x+$\frac{P}{x^n}$≥n+1,其中P等于(  )
A.nnB.(n-1)nC.nn-1D.xn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中错误的是(  )
A.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos2y成立
B.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin2y成立
C.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(cosy)=cos3y成立
D.存在定义在[-1,1]上的函数f(x)使得对任意实数y有等式f(siny)=sin3y成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α、β∈(0,π),且cosα=$\frac{{\sqrt{10}}}{10}$,cosβ=$\frac{{\sqrt{5}}}{5}$,那么α+β=$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案