精英家教网 > 高中数学 > 题目详情
15.已知α是第三象限角,sinα=-$\frac{5}{13}$,则cosα=(  )
A.-$\frac{5}{13}$B.-$\frac{12}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

分析 由条件利用同角三角函数的基本关系,求得cosα的值.

解答 解:∵α是第三象限角,sinα=$\frac{5}{13}$,则cosα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{12}{13}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{1}{x}$上的点到直线y=-x-1的最短距离是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.则甲、乙两名运动员成绩比较(  )
A.甲比乙稳定B.乙比甲稳定
C.甲、乙稳定程度相同D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=$\frac{1}{8}$x2+$\frac{1}{2}$x+$\frac{1}{2}$的图象上,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow m$=(sinB,1-cosB),$\overrightarrow n$=(2,0),且$\overrightarrow m,\overrightarrow n$的夹角为$\frac{π}{3}$,其中A,B,C为△ABC的内角.
(1)求角B的大小;
(2)求sin2A+sin2C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等比数列{an}中,a3,a15是方程x2-6x+1=0的两根,则a7a8a9a10a11等于(  )
A.-1B.1C.-15D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设x>0,y>0,x+y≤4,则$\frac{1}{x}$+$\frac{1}{y}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各式中不能化简为$\overrightarrow{AD}$的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$B.$\overrightarrow{AD}$+$\overrightarrow{EB}$+$\overrightarrow{BC}$+$\overrightarrow{CE}$C.$\overrightarrow{MB}$-$\overrightarrow{MA}$+$\overrightarrow{BD}$D.$\overrightarrow{CB}$+$\overrightarrow{AD}$-$\overrightarrow{BC}$

查看答案和解析>>

同步练习册答案