精英家教网 > 高中数学 > 题目详情
9.已知命题p:1∈{x|x2<a},q:2∈{x|x2<a},则“p且q”为真命题时,a的取值范围是a>4.

分析 若“p且q”为真命题,则命题p,q均为真命题,结合元素与集合的关系,可得a的取值范围.

解答 解:若“p且q”为真命题,则命题p,q均为真命题,
若1∈{x|x2<a},则1<a,
若2∈{x|x2<a},则4<a,
综上可得:a>4,
故答案为:a>4

点评 本题以命题的真假判断与应用为载体,考查了不等式解法,元素与集合的关系,复合命题,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若圆锥的侧面积为$9\sqrt{2}$π,且母线与底面所成的角为$\frac{π}{4}$,则此圆锥的体积为9π.(答案保留π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过抛物线x=8y2的焦点作两条互相垂直的弦AB、CD,则$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知(x,y)在映射f下的像是(x+y,x-y),则像(1,2)在f下的原像为(  )
A.$(\frac{3}{2},\frac{1}{2})$B.$(-\frac{3}{2},\frac{1}{2})$C.$(-\frac{3}{2},-\frac{1}{2})$D.$(\frac{3}{2},-\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,且经过点M(4,1).直线l:y=x+m交椭圆于A,B两不同的点.
(1)求椭圆方程;
(2)若直线l与椭圆有两个不同的交点,求m的取值范围;  
(3)若直线l不过点M,求证:直线MA,MB与x轴围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y>m2+3m-2恒成立,则实数m的取值范围是(  )
A.m<-2或m>5B.-5<m<2C.-2<m<5D.m<-5或m>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正方形ABCD的边长为2,直线MN过正方形的中心O交线段AD,BC于M,N两点,若点P满足$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-$\frac{1}{2}$a(x-1)(a∈R)).
(1)若a=-4,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈(1,+∞),函数f(x)的图象始终在x轴的下方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lgkx,g(x)=lg(x+1),h(x)=$\frac{x}{{x}^{2}+1}$.
(1)当k=1时,求函数y=f(x)+g(x)的单调区间;
(2)若方程f(x)=2g(x)仅有一个实根,求实数k的取值集合;
(3)设p(x)=h(x)+$\frac{mx}{1+x}$在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案