精英家教网 > 高中数学 > 题目详情
10.某几何体的三视图如图所示,则该几何体的体积为$\frac{4}{3}$.

分析 根据几何体的三视图知,该几何体是直三棱柱与三棱锥的组合体;
结合图中数据,计算它的体积即可.

解答 解:根据几何体的三视图知,
该几何体是下部为直三棱柱,上部为三棱锥的组合体;
且组合体的底面为直角三角形,
根据图中数据,计算组合体的体积为
V组合体=V三棱柱+V三棱锥
=$\frac{1}{2}$×2×1×1+$\frac{1}{3}$×$\frac{1}{2}$×2×1×1
=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查了空间几何体三视图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图所示,在棱长为a的正方体ABCD-A1B2C3D4中,点E,F分别在棱AD,BC上,且AE=BF=$\frac{1}{3}$a.过EF的平面绕EF旋转,与DD1、CC1的延长线分别交于G,H点,与A1D1、B1C1分别交于E1,F1点.当异面直线FF1与DD1所成的角的正切值为$\frac{1}{3}$时,|GF1|=(  )
A.$\frac{\sqrt{19}a}{3}$B.$\frac{\sqrt{19}a}{9}$C.$\frac{\sqrt{2}a}{3}$D.$\frac{\sqrt{2}a}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是块矩形硬纸板,其中AB=2AD,$AD=\sqrt{2}$,E为DC的中点,将它沿AE折成直二面角D-AE-B.
(1)求证:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a>0,b>0,函数f(x)=|x+a|+|x-b|的最小值为4.
(Ⅰ)求a+b的值;
(Ⅱ)求$\frac{1}{4}{a^2}+\frac{1}{9}{b^2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个四棱锥的三视图如图所示,则该四棱锥外接球的体积为$4\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“对任意的x∈R,x3-x+1≤0”的否定是(  )
A.不存在x∈R,x3-x+1≤0B.存在x∈R,x3-x+1≤0
C.对任意的x∈R,x3-x+1>0D.存在x∈R,x3-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠$\sqrt{2}$,有以下四个结论:①AA1⊥MN;②AB∥MN;③MN∥平面A1B1C1D1;④MN与A1C1一定是异面直线.其中正确命题的序号是(  )
A.①③B.②③C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知某几何体的俯视图是如图所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其侧面积(  )
A.4B.$4\sqrt{3}$C.$4(1+\sqrt{3})$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}满足:a2=2,Sn-Sn-3=54(n>3),Sn=100,则n=(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案