精英家教网 > 高中数学 > 题目详情
12.函数$f(x)=\left\{\begin{array}{l}{10^{1-x}}+1,x≤0\\ lg(x+2),x>0.\end{array}\right.$若f(a)=1,则f(8-a)=(  )
A.4B.6C.8D.11

分析 由题意,lg(a+2)=1,求出a,即可得出结论.

解答 解:由题意,lg(a+2)=1,∴a=8,
∴f(8-a)=f(0)=11.
故选:D,

点评 本题考查分段函数的运用,考查分段函数值,必须注意各段的自变量的范围,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$+3的最大值、最小值分别为M、n,则M+n=(  )
A.0B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列函数中图象关于y轴对称的是(  )
①y=log2x;  ②y=x2; ③y=2|x|;   ④$y=\frac{2}{x}$.
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,已知∠A=60°,$a=4\sqrt{6}$,b=8,求∠B的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于函数f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),则下列命题:
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)最小正周期是π;
③y=f(x)在区间$[\frac{π}{24},\frac{13π}{24}]$上是减函数;
④将函数y=$\sqrt{2}$cos2x的图象向右平移$\frac{π}{24}$个单位后,将与已知函数的图象重合.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=3,b=$\sqrt{6}$,A=$\frac{π}{3}$,则角B等于(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求值:cos25°cos35°-cos65°cos55°;
(2)已知sinθ+2cosθ=0,求$\frac{cos2θ-sin2θ}{{1+{{cos}^2}θ}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点O为线段AB=4的中点,C为平面上任一点,$\overrightarrow{CA}•\overrightarrow{CB}=0$(C与A,B不重合),若P为线段OC上的动点,则$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$的最小值是(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题,其中正确的命题是④
①y=sinx在第一象限为增函数;
②函数y=cos(ωx+φ)的最小正周期为T=$\frac{2π}{ω}$;
③函数y=sin($\frac{2x}{3}$+$\frac{7π}{2}$)是奇函数;
④函数y=cos2x向左平移$\frac{π}{8}$个单位得到y=cos(2x+$\frac{π}{4}$)

查看答案和解析>>

同步练习册答案