【题目】在平面直角坐标系xOy中,设不等式组 所表示的平面区域是W,从区域W中随机取点M(x,y).
(1)若x,y∈Z,求点M位于第一象限的概率;
(2)若x,y∈R,求|OM|≥1的概率.
【答案】
(1)解:若x,y∈Z,则点M的个数共有12个,列举如下:
(﹣1,0),(﹣1,1),(﹣1,2),(0,0),(0,1),(0,2),
(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).
当点M的坐标为(1,1),(1,2),(2,1),(2,2)时,
点M位于第一象限,故点M位于第一象限的概率为
(2)解:这是一个几何概率模型,
则区域W的面积是3×2=6,
|OM|<1的面积是以(0,0)为原点,以1为半径的半圆,面积是 ,
故|OM|<1的概率是 = ,
故满足|OM|≥1的概率是
【解析】(1)①做出所示平面区域②画网格描整点,找出整数点坐标个数,再找出第一象限中的点个数.二者做除法即可算出概率;(2)这是一个几何概率模型.算出图中以(0,0)为圆心,1为半径的半圆的面积,即可求出概率.
【考点精析】解答此题的关键在于理解几何概型的相关知识,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,圆的参数方程为(为参数),以O为极点, 轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的普通方程;
(Ⅱ)直线的极坐标方程是,射线与圆C的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a1+a3=10,S4=24.
(1)求数列{an}的通项公式;
(2)令Tn= ,求证:Tn< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且 a=2csinA.
(1)确定∠C的大小;
(2)若c= ,求△ABC周长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是( )
A.=(0,0) =(1,﹣2)
B.=(﹣1,2) =(3,7)
C.=(3,5) =(6,10)
D.=(2,﹣3) =( ,﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0.当直线l被圆C截得的弦长为 时,求
(Ⅰ)a的值;
(Ⅱ)求过点(3,5)并与圆C相切的切线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com