精英家教网 > 高中数学 > 题目详情
9.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与抛物线y2=4x的焦点重合,则a+b的最大值为(  )
A.$\sqrt{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2$\sqrt{2}$

分析 求出抛物线的焦点,可得双曲线的c=1,a2+b2=1,令a=cosα,b=sinα(0<α<$\frac{π}{2}$),运用两角和的正弦公式,结合正弦函数的值域即可得到最大值.

解答 解:抛物线C1:y2=4x的焦点为(1,0),即有双曲线的右焦点为(1,0),
即c=1,a2+b2=1,
令a=cosα,b=sinα(0<α<$\frac{π}{2}$),
则a+b=cosα+sinα=$\sqrt{2}$sin(α+$\frac{π}{4}$)
当α+$\frac{π}{4}$=$\frac{π}{2}$时,sin(α+$\frac{π}{4}$)取得最大值1,
即有a+b取得最大值$\sqrt{2}$.
故选:A.

点评 本题考查抛物线和双曲线的方程和性质,同时考查三角换元和正弦函数的图象和性质,运用两角和的正弦公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-3ax2+1,且x=1为函数f(x)的一个极值点.
(1)求a的值;
(2)证明:f(x)≤2x2-3x2-x+ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有2000名网购者在11月11日当天于某购物网站进行网购消费(每人消费金额不超过 1000元),其中有女士1100名,男士900名,该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分折,如下表(消费金額卑位:元)
女士消费情况:
 消费金额 (0.200) 
[200,400)
 
[400.600)
 
[600,800)
 
[800,1000]
 人数 10 25 35 30 X
男士消费情况况:
消费金额(0.200)
[200,400)

[400.600)

[600,800)

[800.1000]
人数153025Y5
(1)计算算x,y的值;在抽出的200名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者都是男士的概率;
(2)若消费金额不低于600元的网购者为“网购达人,低于600元的网购者为“非网购达人”根据以上统计数据填写答题卡中的2×2列联表,并冋答能否在犯错误的概率不超过0.05的前提下认为“是否为网购达人与性别有关?”
附表:
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005
 k0 2.706 3.841 5.024 6.635 7.879
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别是a,b,c,且$\frac{cosC}{cosB}$=$\frac{3a-c}{b}$.
(Ⅰ)求cosB的值;
(Ⅱ)若b=4$\sqrt{2}$,a=c,求sin(A+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,-1),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则实数k的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ex的图象与函数g(x)=|ln(-x)|的图象有两个交点A(x1,y1),B(x2,y2),则(  )
A.$\frac{1}{10}$<x1x2<$\frac{1}{e}$B.$\frac{1}{e}$<x1x2<1C.1<x1x2<eD.x1x2>e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),试判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设n∈N*,(x+3)n展开式的所有项系数和为256,则其二项式系数的最大值为6.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.袋中有5个球,其中有彩色球2个.甲、乙二人先后依次从袋中取球,每次取后不放回,规定先取出彩色球者获胜.则甲获胜的概率为$\frac{3}{5}$.(以整数比作答)

查看答案和解析>>

同步练习册答案