精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),试判断直线与圆的位置关系.

分析 (1)运用代入法,可得a的值;再由两角差的余弦公式和直角坐标和极坐标的关系,即可得到直角坐标方程;
(2)求得圆的普通方程,求得圆的圆心和半径,由点到直线的距离公式计算即可判断直线和圆的位置关系.

解答 解:(1)由点A($\sqrt{2}$,$\frac{π}{4}$)在直线ρcos(θ-$\frac{π}{4}$)=a上,可得a=$\sqrt{2}$cos0=$\sqrt{2}$,
所以直线的方程可化为ρcosθ+ρsinθ=2,
从而直线的直角坐标方程为x+y-2=0,
(2)由已知得圆C的直角坐标方程为(x-1)2+y2=1,
所以圆心为(1,0),半径r=1,
∴圆心到直线的距离d=$\frac{|1+0-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$<1,
所以直线与圆相交.

点评 本题考查参数方程和极坐标方程与普通方程的互化,同时考查直线和圆的位置关系的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求函数y=arctan($\sqrt{2}$sinx-cosx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知方程$\frac{x^2}{4-m}+\frac{y^2}{m-1}$=1(m是常数)表示曲线C,给出下列命题:
①曲线C不可能为圆;
②曲线C不可能为抛物线;
③若曲线C为双曲线,则m<1或m>4;
④若曲线C为焦点在x轴上的椭圆,则1<m<$\frac{5}{2}$.
其中真命题的编号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与抛物线y2=4x的焦点重合,则a+b的最大值为(  )
A.$\sqrt{2}$B.1C.$\frac{\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A、B、C所对的边分别为a、b、c,且a+b=6,c=2,cosC=$\frac{7}{9}$.
(Ⅰ)求a、b的值;
(Ⅱ)求sin(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,且A,B,C分别为△ABC的三边a,b,c所对的角.
(I)求角C的大小;
(Ⅱ)若sinA,sinC,sinB成等差数列,且△ABC的面积为$9\sqrt{3}$,求c边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,直线PQ与⊙O相切于点A,AB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连结CB,并延长与直线PQ相交于点Q,若AQ=6,AC=5.
(Ⅰ)求证:QC2-QA2=BC•QC;
(Ⅱ)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设i为虚数单位,复数$\frac{1-i}{i}$=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等差数列{an}的前n项和为Sn,a4=10,S3=12,则数列{an}的首项a1=1,通项an=3n-2.

查看答案和解析>>

同步练习册答案