精英家教网 > 高中数学 > 题目详情
8.已知tanx=3,如果π<x<$\frac{3}{2}π$,则cosx的值为-$\frac{\sqrt{10}}{10}$.

分析 由条件利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得cosx的值.

解答 解:∵tanx=$\frac{sinx}{cosx}$=3,sin2x+cos2x=1,π<x<$\frac{3}{2}π$,∴cosx=-$\frac{\sqrt{10}}{10}$,
故答案为:-$\frac{\sqrt{10}}{10}$.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.正六棱柱形的茶叶筒(有底无盖),筒长16cm,底面外接圆半径是4.8cm,则制造这个茶叶筒需要多大面积的铁皮?(精确到0.01cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a,b为不等于1的正数,且实数x,y,z满足$\frac{1}{x}$+$\frac{1}{y}$=$\frac{1}{z}$.求证:
(1)若ax=by,则ax=(ab)z
(2)若ax=(ab)z,则by=(ab)z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\frac{x+2}{m{x}^{2}+2mx+3}$的定义域为R,则实数m的取值范围是 (  )
A.(0,3)B.[0,3)C.[0,2)∪(2,3)D.[0,2)∪(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.cos(-$\frac{π}{4}$)tan(-$\frac{5π}{6}$)的值为(  )
A.$\frac{\sqrt{2}}{6}$B.-$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{6}$D.-$\frac{\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=3x2-6x-5.
(1)求f(x)在[0,3]上的最大值;
(2)设g(x)=f(x)-2x2+mx,其中m∈R,求g(x)在区间[1,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点M(x,y)满足条件$\left\{\begin{array}{l}{\underset{x-y+2≥0}{x+y-4≥0}}\\{2x-y-5≤0}\end{array}\right.$,点N(x,y)满足x2+y2-10y+23≤0,则|MN|的最小值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2.|$\overrightarrow{c}$|=1.$\overrightarrow{a}$•$\overrightarrow{b}$=1,则($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)的最大值为 (  )
A.2+$\sqrt{10}$B.2+$\sqrt{7}$C.1+$\sqrt{10}$D.1+$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知映射f1:P→Q是从P到Q的函数,则P,Q的元素(  )
A.可以是点B.必须是实数C.可以是方程D.可以是三角形

查看答案和解析>>

同步练习册答案