精英家教网 > 高中数学 > 题目详情

【题目】已知圆C: .

(1)若直线y轴上的截距为0且不与x轴重合,与圆C交于,试求直线:x轴上的截距;

(2)若斜率为1的直线与圆C交于D,E两点,求使面积的最大值及此时直线的方程.

【答案】(1);(2)的最大值为2,直线的方程为.

【解析】

(1)根据题意设直线,联立消元可得,化简,即可写出直线m(2)设直线的方程:,利用圆心距,半径,半弦长构成直角三角形求出弦长,写出三角形面积求最值即可.

(1)圆C:,设直线,联立,则有:,故

,故直线:

,得为直线在x轴上的截距.

(2) 设直线的方程:,则圆心C到直线的距离为.

弦长,则面积的为: ,(当且仅当 ,即时取“=”).

的最大值为2,此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四名同学各掷骰子5次,分别记录每次骰子出现的点数,根据四名同学的统计结果,可以判断出一定没有出现点数6的是(

A.平均数为3.中位数为2B.中位数为3.众数为2

C.平均数为2.方差为2.4D.中位数为3.方差为2.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】语文中有回文句,如:上海自来水来自海上,倒过来读完全一样。数学中也有类似现象,如:88,454,7337,43534等,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为回文数”!

二位的回文数有11,22,33,44,55,66,77,88,99,共9个;

三位的回文数有101,111,121,131,…,969,979,989,999,共90个;

四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;

由此推测:11位的回文数总共有_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(l,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=fx)的切线方程是(  )

A. 6x﹣y﹣4=0 B. x﹣4y+7=0

C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),且曲线在点处的切线垂直于直线.

(1)求的值及此时的切线方程;

(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点为棱的中点,点为线段上一动点.

(Ⅰ)求证:当点为线段的中点时,平面

(Ⅱ)设,试问:是否存在实数,使得平面与平面所成锐二面角的余弦值为?若存在,求出这个实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数上的最大值;

(Ⅱ)讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。右图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就。如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则此数列前16项和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组有男生20人,女生10人,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则

①该抽样可能是系统抽样;

②该抽样可能是随机抽样:

③该抽样一定不是分层抽样;

④本次抽样中每个人被抽到的概率都是

其中说法正确的为( )

A.①②③B.②③C.②③④D.③④

查看答案和解析>>

同步练习册答案