精英家教网 > 高中数学 > 题目详情
19.不等式组$\left\{\begin{array}{l}x≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$所表示的平面区域为D.若直线y=a(x+1)与区域D有公共点,则实数a的取值范围是$(-∞,\frac{3}{4}]$.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域图示:
因为y=a(x+1)过定点C(-1,0).
当a≤0时,直线y=a(x+1)与区域D有公共点,满足条件.
当a>0时,当直线y=a(x+1)过点A时,由公共点,
由$\left\{\begin{array}{l}{y=x}\\{2x+y-9=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即A(3,3),
代入y=a(x+1)得4a=3,a=$\frac{3}{4}$,
又因为直线y=a(x+1)与平面区域D有公共点.
此时0<a≤$\frac{3}{4}$.
综上所述,a≤$\frac{3}{4}$.
故答案为:$(-∞,\frac{3}{4}]$.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}|lo{g}_{3}x|,0<x<3\\-cos(\frac{π}{3}x),3≤x≤9\end{array}\right.$,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•x3•x4的取值范围是(  )
A.(7,$\frac{29}{4}$)B.(21,$\frac{135}{4}$)C.[27,30)D.(27,$\frac{135}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列有关命题的说法错误的是(  )
A.函数f(x)=sinxcosx的最小正周期为π
B.函数$f(x)=lnx+\frac{1}{2}x-2$在区间(2,3)内有零点
C.已知函数$f(x)={log_a}({x^2}-2x+2)$,若$f(\frac{1}{2})>0$,则0<a<1
D.在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(-∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2ex-(x-a)2+3,g(x)=f′(x).
(Ⅰ)当a为何值时,x轴是曲线y=g(x)的切线?
(Ⅱ)当a<-1时,证明:g(x)在[0,+∞)有唯一零点;
(Ⅲ)当x≥0时,f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足a1=1,若n为奇数时,有an+1=2an+1;若n为偶数时,an+1=an+n.则该数列的第7项a7的值为(  )
A.37B.32C.35D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如表:
阅读名著的本数12345
男生人数31213
女生人数13312
(Ⅰ)试根据上述数据,求这个班级女生阅读名著的平均本数;
(Ⅱ)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率;
(Ⅲ)试判断该班男生阅读名著本数的方差${s_1}^2$与女生阅读名著本数的方差${s_2}^2$的大小
(只需写出结论).(注:方差${s^2}=\frac{1}{n}[{({x_1}-\bar x)^2}+{({x_2}-\bar x)^2}+…+{({x_n}-\bar x)^2}]$,其中$\overline x$为x1x2,…xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在四边形ABCD中,AB=7,AC=6,$cos∠BAC=\frac{11}{14}$,CD=6sin∠DAC,则BD的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设复数z满足(1+i)z=2i,则z的共轭复数$\overline{z}$=(  )
A.-1-iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左、右焦点分别为F1,F2点P在双曲线的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,双曲线的离心率为$\sqrt{2}$,则λ=2+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案