| A. | (7,$\frac{29}{4}$) | B. | (21,$\frac{135}{4}$) | C. | [27,30) | D. | (27,$\frac{135}{4}$) |
分析 画出分段函数的图象,求得(3,1),(9,1),令f(xl)=f(x2)=f(x3)=f(x4)=a,作出直线y=a,通过图象观察,可得a的范围,运用对数的运算性质和余弦函数的对称性,可得x1x2=1,x3+x4=12,再由二次函数在(3,4.5)递增,即可得到所求范围.
解答 解:画出函数f(x)的图象,![]()
令f(xl)=f(x2)=f(x3)=f(x4)=a,
作出直线y=a,
由x=3时,f(3)=-cosπ=1;x=9时,f(9)=-cos3π=1.
由图象可得,当0<a<1时,直线和曲线y=f(x)有四个交点.
由图象可得0<x1<1<x2<3<x3<4.5,7.5<x4<9,
则|log3x1|=|log3x2|,即为-log3x1=log3x2,可得x1x2=1,
由y=-cos($\frac{π}{3}$x)的图象关于直线x=6对称,可得x3+x4=12,
则x1•x2•x3•x4=x3(12-x3)=-(x3-6)2+36在(3,4.5)递增,
即有x1•x2•x3•x4∈(27,$\frac{135}{4}$).
故选:D.
点评 本题考查分段函数的图象及运用,考查数形结合的思想方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,e) | D. | (e,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com