精英家教网 > 高中数学 > 题目详情
1.若x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-1≤0}\\{x≥0}\\{\;}\end{array}\right.$,则z=5x-3y+1的最小值为(  )
A.-2B.0C.1D.3

分析 作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=5x-3y+1得y=$\frac{5}{3}$x+$\frac{1-z}{3}$,
平移直线y=$\frac{5}{3}$x+$\frac{1-z}{3}$,
由图象可知当直线y=$\frac{5}{3}$x+$\frac{1-z}{3}$经过点A(0,1)时,直线的截距最大,
此时z最小,
此时z=-3+1=-2,
故选:A.

点评 本题主要考查导数的几何意义,以及利用线性规划的应用,综合性较强,考查学生解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=eax+1的图象在点(1,f(1))处的切线斜率为a,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设m>0,点A(4,m)为抛物线y2=2px(p>0)上一点,F为焦点,以A为圆心|AF|为半径的圆C被y轴截得的弦长为6,则圆C的标准方程为(x-4)2+(y-4)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}|lo{g}_{3}x|,0<x<3\\-cos(\frac{π}{3}x),3≤x≤9\end{array}\right.$,若存在实数x1,x2,x3,x4,当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•x3•x4的取值范围是(  )
A.(7,$\frac{29}{4}$)B.(21,$\frac{135}{4}$)C.[27,30)D.(27,$\frac{135}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1<-|k|,an+1=$\frac{1}{2}$(an+$\frac{{k}^{2}}{{a}_{n}}$)(n∈N*,k∈R,k≠0)
(1)判断数列{an}的增减性,并说明理由;
(2)设数列{an}的前n项和为Sn,求证:Sn>2a1+(2-n)|k|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={-1,0,1,},B={x|(x-1)2<1},则A∩B=(  )
A.{-1,0,1}B.{0}C.{1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0)过点M(0,-$\sqrt{2}$),离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C1的标准方程;
(2)已知椭圆C2:x2+$\frac{{y}^{2}}{2}$=1,过点M引两条斜率分别为k,4k的直线分别交C1,C2于点P,Q,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列有关命题的说法错误的是(  )
A.函数f(x)=sinxcosx的最小正周期为π
B.函数$f(x)=lnx+\frac{1}{2}x-2$在区间(2,3)内有零点
C.已知函数$f(x)={log_a}({x^2}-2x+2)$,若$f(\frac{1}{2})>0$,则0<a<1
D.在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(-∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在四边形ABCD中,AB=7,AC=6,$cos∠BAC=\frac{11}{14}$,CD=6sin∠DAC,则BD的最大值为8.

查看答案和解析>>

同步练习册答案