精英家教网 > 高中数学 > 题目详情
12.已知集合U={x|y=$\sqrt{x}$},A={x|3≤2x-1<5},则∁UA=(  )
A.(0,2)B.[0,2)∪[3,+∞)C.[1,+∞)D.[2,3]

分析 求出U中x的范围确定出U,求出A中不等式的解集确定出A,求出A的补集即可.

解答 解:由U中y=$\sqrt{x}$,得到x≥0,即U=[0,+∞),
由A中不等式解得:2≤x<3,即A=[2,3),
则∁UA=[0,2)∪[3,+∞),
故选:B.

点评 此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图①所示一个正三棱柱形容器,高为2,内装水若干,将容器放倒使一个侧面成为底面,这时水面恰为中截面,如图②,则未放倒前的水面高度为1.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{e^x}+{x^2},x≥0\\{e^{-x}}+{x^2},x<0\end{array}$,若f(-a)+f(a)≤2f(1),则a的取值范围是(  )
A.(-∞,1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1上的一点,M,N分别为BC1AB,的中点.
(1)求证:MN∥平面DCC1
(2)当D为AA1的中点时,求三棱锥D-ACN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={a1,a2,a3,…an},(0≤a1<a2<a3<…<an,n∈N*,n≥3)具有性质P:对任意的i,j(1≤i≤j≤n),aj+ai,ai-ai至少有一个属于A.
(1)分别判断集合M={0,2,4}与N={1,2,3}是否具有性质P
(2)求证:
①a1=0
②a1+a2+a3+…+an=$\frac{n}{2}$an
(3)当n=3或4时集合A中的数列{an}是否一定成等差数列?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{x-2+\frac{1}{x-2},x>2}\\{-\frac{1}{x-2}-1,1<x<2}\\{-x+1,x≤1}\end{array}\right.$,g(x)=$\frac{1}{3}$x+m,若函数h(x)=f(x)-g(x)有四个零点,则实数m的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)等差数列{an}的前n项和记为Sn,已知a10=30,a20=50,Sn=242,求n.
(2)等比数列{an}的前n项和为Sn,若S10=10,S30=130,求S20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}$,则目标函数z=$\frac{y+2}{x}$的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\{x^2}+2{y^2}≤1\end{array}\right.$,则z=4x-y的最小值为$-\frac{5}{2}$.

查看答案和解析>>

同步练习册答案