精英家教网 > 高中数学 > 题目详情
15.端午节即将到来,为了做好端午节商场促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片ABCD剪去四个全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′再将剩下的阴影部分折成一个四棱锥形状的包装盒S-EFGH,其中A,B,C,D重合于点O,E与E′重合,F与F′重合,G与G′重合,H与H′重合(如图所示).
(Ⅰ)求证:平面SEG⊥平面SFH;
(Ⅱ)当AE=$\frac{5}{2}$时,求二面角E-SH-F的余弦值.

分析 (Ⅰ)拼接成底面EFGH的四个直角三角形必为全等的等腰直角三角形,从而EG⊥FH,EG⊥FH,EG⊥SO,由此能证明平面SEG⊥平面SFH.
(Ⅱ)过O作OM⊥SH交SH于M点,连EM,证明∠EMO为二面角E-SH-F的平面角,即可求得结论.

解答 (1)证明:∵折后A,B,C,D重合于一点O,
∴拼接成底面EFGH的四个直角三角形必为全等的等腰直角三角形,
∴底面EFGH是正方形,故EG⊥FH,
∵在原平面EFGH是正方形,故EG⊥FH,
∵在原平面图形中,等腰三角形△SEE′≌△SGG′,
∴SE=SG,∴EG⊥SO,
又∵SO、FH?平面SFH,SO∩FH=O,
∴EC⊥平面SFH,
又∵EG?平面SEC,∴平面SEG⊥平面SFH.…(6分)
(Ⅱ)解:过O作OM⊥SH交SH于M点,连EM,
∵EO⊥平面SFH,
∴EO⊥SH,
∴SH⊥面EMO,
∴∠EMO为二面角E-SH-F的平面角.…(8分)
当AE=$\frac{5}{2}$时,即OE=$\frac{5}{2}$
Rt△SHO中,SO=5,SH=$\frac{5\sqrt{5}}{2}$,∴OM=$\frac{SO•OH}{SH}$=$\sqrt{5}$,
Rt△EMO中,EM=$\sqrt{E{O}^{2}+O{M}^{2}}$=$\frac{3\sqrt{5}}{2}$,
∴cos∠EMO=$\frac{OM}{EM}$=$\frac{2}{3}$,
∴所求二面角的余弦值为$\frac{2}{3}$.                               …(12分)

点评 本小题考查空间中直线与平面的位置关系、二面角的余弦值等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、函数与方程思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在抛物线y2=2x中,焦点到准线的距离为a,若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥o}\\{x+y≥0}\\{x≤a}\end{array}\right.$,则z=x+2y的最小值是(  )
A.-1B.$\frac{1}{2}$C.5D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC外接球表面积为(  )
A.B.12πC.32πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知0°<α<45°,且lg(tanα)-lg(sinα)=lg(cosα)-lg($\frac{1}{tanα}$)+2lg3-$\frac{3}{2}$lg2,则cos3α-sin3α=$\frac{16\sqrt{2}-1}{27}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设向量$\overrightarrow{a}$=(sinx,cos2x),$\overrightarrow{b}$=(sin2x,cosx).
(1)设$f(x)=\overrightarrow a•\overrightarrow b+sinx$,当$x∈(0,\frac{π}{2})$时,求f(x)的取值范围;
(2)构建两个集合A={sinx,cos2x},B={sin2x,cosx},若集合A=B,求满足条件的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(x-$\frac{2}{x}$)5的展开式中,x的系数为(  )
A.40B.-40C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-1|+|x-3|+|x-a|.
(Ⅰ)当a=1时,求不等式f(x)<4的解集;
(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,曲线C:$\left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.$(t为参数)与y轴交于点A,在以原点为极点,x轴的正半轴为极轴且单位长度相同的极坐标系中曲线E的方程为ρ-2sinθ=0,则A与曲线E上的点的距离的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动点P(x,y)到直线l:x=-2的距离是它到定点F(-1,0)的距离的$\sqrt{2}$倍.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过F(-1,0)作与x轴垂直的直线与轨迹C在第三象限的交点为Q,过F(-1,0)的动直线与轨迹C相交于不同的两点A,B,与直线l相交于点M,记直线QA,QB,QM的斜率依次为k1,k2,k3,试证明:$\frac{{{k_1}+{k_2}}}{k_3}$为定值.

查看答案和解析>>

同步练习册答案