分析 (1)连结AD1,A1D,交于点F,连结EF,则EF∥BD1,由此能证明直线BD1∥平面A1DE.
(2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出点D1到平面A1DE的距离.
解答 证明:(1)
连结AD1,A1D,交于点F,连结EF,
∵四边形ADD1A1为矩形,E为线段AB的中点,
∴EF∥BD1,
∵EF?平面A1DE,BD1?平面A1DE,
∴直线BD1∥平面A1DE.
解:(2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵AB=2AD=2AA1=2,
∴D1(0,0,2),A1(1,0,2),D(0,0,0),E(1,1,0),
$\overrightarrow{D{A}_{1}}$=(1,0,2),$\overrightarrow{DE}$=(1,1,0),$\overrightarrow{D{D}_{1}}$=(0,0,2),
设平面A1DE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=x+2z=0}\\{\overrightarrow{n}•\overrightarrow{DE}=x+y=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,-2,-1),
∴点D1到平面A1DE的距离:
d=$\frac{|\overrightarrow{D{D}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2}{3}$.
点评 本题考查线面平行的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (4,+∞) | B. | (5,+∞) | C. | $(1,\frac{5}{2})$ | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com