| A. | 至少有一个不小于2 | B. | 都小于2 | ||
| C. | 至少有一个不大于2 | D. | 都大于2 |
分析 假设a,b,c三数都小于2,则x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$<6,由均值不等式可得a+b+c≥6,从而推出矛盾.
解答 解:假设a,b,c三数都小于2,则x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$<6,
∵x,y,z均大于0,
∴a+b+c=x+$\frac{1}{y}$+y+$\frac{1}{z}$+z+$\frac{1}{x}$≥2+2+2=6,矛盾.
∴a,b,c至少有一个不小于2.
故选:A.
点评 本题考查不等式的证明,考查反证法的运用,用反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≠-2} | B. | {x|x≠-1} | C. | {x|x≠-2且x≠-1} | D. | {x|x≠0且x≠-1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com