4£®ÒÑÖªa£¬bΪʵÊý£¬º¯Êýf£¨x£©=ax3-bx£®
£¨1£©µ±a=1ÇÒb¡Ê[1£¬3]ʱ£¬Çóº¯ÊýF£¨x£©=|$\frac{f£¨x£©}{x}-lnx$|+2b+1£¨x¡Ê[$\frac{1}{2}£¬2$]µÄ×î´óֵΪM£¨b£©£©£»
£¨2£©µ±a=0£¬b=-1ʱ£¬¼Çh£¨x£©=$\frac{lnx}{f£¨x£©}$
¢Ùº¯Êýh£¨x£©µÄͼÏóÉÏÒ»µãP£¨x0£¬y0£©´¦µÄÇÐÏß·½³ÌΪy=y£¨x£©£¬¼Çg£¨x£©=h£¨x£©-y£¨x£©£®ÎÊ£ºÊÇ·ñ´æÔÚx0£¬Ê¹µÃ¶ÔÓÚÈÎÒâx1¡Ê£¨0£¬x0£©£¬ÈÎÒâx2¡Ê£¨x0£¬+¡Þ£©£¬¶¼ÓÐg£¨x1£©g£¨x2£©£¼0ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÇóÒ²ËùÓпÉÄܵÄx0×é³ÉµÄ¼¯ºÏ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¢ÚÁÊýH£¨x£©=$\left\{\begin{array}{l}{\frac{x}{2e}£¬x¡Ýs}\\{h£¨x£©£¬0£¼x£¼s}\end{array}\right.$£¬Èô¶ÔÈÎÒâʵÊýk£¬×Ü´æÔÚʵÊýx0£¬Ê¹µÃH£¨x0£©=k³ÉÁ¢£¬ÇóʵÊýsµÄȡֵ¼¯ºÏ£®

·ÖÎö £¨1£©¼Çt£¨x£©=x2-lnx£¬x¡Ê[$\frac{1}{2}$£¬2]£¬Çó³öt£¨x£©µÄ·¶Î§ÊÇ[$\frac{1+ln2}{2}$£¬4-ln2]£¬b¡Ê[1£¬3]ʱ£¬¼Çv£¨t£©=|t-b|+2b+1£¬Çó³öº¯ÊýµÄµ¥µ÷ÐÔ£¬Çó³öM£¨b£©¼´¿É£»
£¨2£©¢ÙÇó³öh£¨x£©µÄµ¼Êý£¬Çó³ög£¨x£©µÄ±í´ïʽ£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔÇó³öx0µÄÖµ¼´¿É£»
¢ÚÇó³öH£¨x£©µÄÖµÓò£¬¸ù¾Ýy=$\frac{1}{2e}$xÔÚ[s£¬+¡Þ£©µÝÔö£¬ÖµÓòÊÇ[$\frac{s}{2e}$£¬+¡Þ£©£¬Èôs£¾e£¬Ôòº¯Êýy=$\frac{lnx}{x}$ÔÚ£¨0£¬e£©µÝÔö£¬[e£¬s£©ÊǼõº¯Êý£¬ÆäÖµÓòÊÇ£¨-¡Þ£¬$\frac{1}{e}$]£¬µÃµ½$\frac{s}{2e}$¡Ü$\frac{lns}{s}$£¬¼´s2-2elns¡Ü0£¬¢Ù£¬¼Çu£¨s£©=s2-2elns£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔÅжϼ´¿É£®

½â´ð ½â£º£¨1£©F£¨x£©=|x2-lnx-b|+2b+1£¬
¼Çt£¨x£©=x2-lnx£¬x¡Ê[$\frac{1}{2}$£¬2]£¬Ôòt¡ä£¨x£©=2x-$\frac{1}{x}$£¬
Áît¡ä£¨x£©=0£¬µÃ£ºx=$\frac{\sqrt{2}}{2}$£¬
$\frac{1}{2}$£¼x£¼2ʱ£¬t¡ä£¨x£©£¼0£¬t£¨x£©ÔÚ£¨$\frac{1}{2}$£¬$\frac{\sqrt{2}}{2}$£©Éϵݼõ£¬
$\frac{\sqrt{2}}{2}$£¼x£¼2ʱ£¬t¡ä£¨x£©£¾0£¬t£¨x£©ÔÚ£¨$\frac{\sqrt{2}}{2}$£¬2£©ÉϵÝÔö£¬
ÓÖt£¨$\frac{1}{2}$£©=$\frac{1}{4}$+ln2£¬t£¨2£©=4-ln2£¬t£¨$\frac{\sqrt{2}}{2}$£©=$\frac{1+ln2}{2}$ÇÒt£¨2£©-t£¨$\frac{1}{2}$£©=$\frac{15}{4}$-2ln2£¾0£¬
¡àt£¨x£©µÄ·¶Î§ÊÇ[$\frac{1+ln2}{2}$£¬4-ln2]£¬
b¡Ê[1£¬3]ʱ£¬¼Çv£¨t£©=|t-b|+2b+1£¬
Ôòv£¨t£©=$\left\{\begin{array}{l}{-t+3b+1£¬\frac{1+ln2}{2}¡Üt¡Üb}\\{t+b+1£¬b£¼t¡Ü4-ln2}\end{array}\right.$£¬
¡ßv£¨t£©ÔÚ[$\frac{1+ln2}{2}$£¬b]Éϵݼõ£¬ÔÚ£¨b£¬4-ln2]µÝÔö£¬
ÇÒv£¨$\frac{1+ln2}{2}$£©=3b+$\frac{1-ln2}{2}$£¬v£¨4-ln2£©=b+5-ln2£¬
v£¨$\frac{1+ln2}{2}$£©-v£¨4-ln2£©=2b+$\frac{ln2-9}{2}$£¬
¡àb¡Ü$\frac{9-ln2}{4}$ʱ£¬×î´óÖµM£¨b£©=v£¨4-ln2£©=b+5-ln2£¬
b£¾$\frac{9-ln2}{4}$ʱ£¬×î´óÖµM£¨b£©=v£¨$\frac{1+ln2}{2}$£©=3b+$\frac{1-ln2}{2}$£¬
¡àM£¨b£©=$\left\{\begin{array}{l}{b+5-ln2£¬1¡Üb¡Ü\frac{9-ln2}{4}}\\{3b+\frac{1-ln2}{2}£¬\frac{9-ln2}{4}£¼b¡Ü4}\end{array}\right.$£»
£¨2£©h£¨x£©=$\frac{lnx}{x}$£¬
¢Ùh¡ä£¨x£©=$\frac{1-lnx}{{x}^{2}}$£¬h¡ä£¨x0£©=$\frac{1-l{nx}_{0}}{{{x}_{0}}^{2}}$£¬
¡ày£¨x£©=$\frac{1-l{nx}_{0}}{{{x}_{0}}^{2}}$£¨x-x0£©+y0£¬
g£¨x£©=$\frac{lnx}{x}$-y0-$\frac{1-l{nx}_{0}}{{{x}_{0}}^{2}}$£¨x-x0£©£¬g£¨x0£©=0£¬
g¡ä£¨x£©=$\frac{1-lnx}{{x}^{2}}$-$\frac{1-l{nx}_{0}}{{{x}_{0}}^{2}}$£¬g¡ä£¨x0£©=0£¬
ÁîG£¨x£©=g¡ä£¨x£©=$\frac{1-lnx}{{x}^{2}}$-$\frac{1-l{nx}_{0}}{{{x}_{0}}^{2}}$£¬G¡ä£¨x£©=$\frac{-3+2lnx}{{x}^{3}}$£¬
¡àg¡ä£¨x£©ÔÚ£¨0£¬${e}^{\frac{3}{2}}$£©µÝ¼õ£¬ÔÚ£¨${e}^{\frac{3}{2}}$£¬+¡Þ£©µÝÔö£¬
Èôx0£¼${e}^{\frac{3}{2}}$£¬Ôòx¡Ê£¨0£¬x0£©Ê±£¬g¡ä£¨x£©£¾0£¬g£¨x£©µÝÔö£¬g£¨x£©£¼g£¨x0£©=0£¬
x¡Ê£¨x0£¬${e}^{\frac{3}{2}}$£©Ê±£¬g¡ä£¨x£©£¼0£¬g£¨x£©µÝ¼õ£¬g£¨x£©£¼g£¨x0£©=0£¬²»·ûºÏÌâÒ⣬
Èôx0£¾${e}^{\frac{3}{2}}$£¬Ôòx¡Ê£¨${e}^{\frac{3}{2}}$£¬x0£©Ê±£¬g¡ä£¨x£©£¼0£¬g£¨x£©µÝ¼õ£¬g£¨x£©£¾g£¨x0£©=0£¬
x¡Ê£¨x0£¬+¡Þ£©Ê±£¬g¡ä£¨x£©£¾0£¬g£¨x£©µÝÔö£¬g£¨x£©£¾g£¨x0£©=0£¬²»·ûºÏÌâÒ⣬
Èôx0=${e}^{\frac{3}{2}}$£¬Ôòx¡Ê£¨0£¬${e}^{\frac{3}{2}}$£©Ê±£¬g£¨x£©£¼0£¬x¡Ê£¨${e}^{\frac{3}{2}}$£¬+¡Þ£©Ê±£¬g£¨x£©£¾0£¬·ûºÏÌâÒ⣬
×ÛÉÏ£¬´æÔÚx0Âú×ãÒªÇó£¬ÇÒx0µÄȡֵ¼¯ºÏÊÇ{${e}^{\frac{3}{2}}$}£¬
¢Ú¡ß¶ÔÈÎÒâʵÊýk£¬×Ü´æÔÚʵÊýx0£¬Ê¹µÃH£¨x0£©=k³ÉÁ¢£¬
¡ày=H£¨x£©µÄÖµÓòÊÇR£¬
y=$\frac{1}{2e}$xÔÚ[s£¬+¡Þ£©µÝÔö£¬ÖµÓòÊÇ[$\frac{s}{2e}$£¬+¡Þ£©£¬
¶ÔÓÚy=$\frac{lnx}{x}$£¬y¡ä=$\frac{1-lnx}{{x}^{2}}$£¬x=eʱ£¬y¡ä=0£¬
x£¾eʱ£¬y¡ä£¾0£¬ÔÚ£¨e£¬+¡Þ£©µÝÔö£¬
0£¼x£¼eʱ£¬y¡ä£¼0£¬ÔÚ£¨0£¬e£©µÝ¼õ£¬
Èôs£¾e£¬Ôòº¯Êýy=$\frac{lnx}{x}$ÔÚ£¨0£¬e£©µÝÔö£¬[e£¬s£©ÊǼõº¯Êý£¬
ÆäÖµÓòÊÇ£¨-¡Þ£¬$\frac{1}{e}$]£¬
ÓÖ$\frac{1}{e}$£¼$\frac{s}{2e}$£¬²»·ûºÏÌâÒ⣬ÉáÈ¥£¬
Èô0£¼s¡Üe£¬Ôòº¯Êýy=$\frac{lnx}{x}$ÔÚ£¨0£¬s£©µÝÔö£¬
ÆäÖµÓòÊÇ£¨-¡Þ£¬$\frac{lns}{s}$£©£¬
ÓÉÌâÒâµÃ£º$\frac{s}{2e}$¡Ü$\frac{lns}{s}$£¬¼´s2-2elns¡Ü0£¬¢Ù£¬
¼Çu£¨s£©=s2-2elns£¬u¡ä£¨s£©=2s-$\frac{2e}{s}$=$\frac{2{£¨s}^{2}-e£©}{s}$£¬
0£¼s£¼$\sqrt{e}$ʱ£¬u¡ä£¨s£©£¼0£¬u£¨s£©ÔÚ£¨0£¬$\sqrt{e}$£©µÝ¼õ£¬
s£¾$\sqrt{e}$ʱ£¬u¡ä£¨s£©£¾0£¬u£¨s£©ÔÚ£¨$\sqrt{e}$£¬e£©µÝÔö£¬
¡às=$\sqrt{e}$ʱ£¬u£¨s£©ÓÐ×îСֵu£¨$\sqrt{e}$£©=0£¬
´Ó¶øu£¨s£©¡Ý0ºã³ÉÁ¢£¨µ±ÇÒ½öµ±s=$\sqrt{e}$ʱ£¬u£¨s£©=0£©¢Ú£¬
Óɢ٢ڵãºu£¨s£©=0£¬µÃ£ºs=$\sqrt{e}$£¬
×ÛÉÏ£¬ÊµÊýsµÄȡֵ¼¯ºÏÊÇ{$\sqrt{e}$}£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°º¯Êýºã³ÉÁ¢ÎÊÌ⣬¿¼²é·ÖÀàÌÖÂÛ˼Ï룬ת»¯Ë¼Ï룬ÊÇÒ»µÀ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¼¯ºÏA={x|x¡Ý0}£¬B={y||y|¡Ü2£¬y¡ÊZ}£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®A¡ÉB=∅B£®£¨∁RA£©¡ÈB={x|x£¼0}C£®A¡ÈB={x|x¡Ý0}D£®£¨∁RA£©¡ÉB={-2£¬-1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèA={x|1£¼x£¼5}£¬B={x|a-1£¼x£¼a}£¬Èô¡°x¡ÊB¡±ÊÇ¡°x¡ÊA¡±µÄ±ØÒª·Ç³ä·ÖÌõ¼þ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®É輯ºÏA={x|-3¡Üx¡Ü2}£¬B={x|2k-1¡Üx¡Ük-1}£¬ÇÒA?B£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ[-1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É輯ºÏA={x|£¨x-3£©£¨x-m£©=0}£¬¼¯ºÏB={x|£¨x-a£©£¨x-b£©=0}£¬¹ØÓÚxµÄ·½³Ìax+4=2x-bÓÐÎÞÊý¸ö½â£®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©ÇóA¡ÈB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªx£¾0£¬y£¾0£¬z£¾0£¬a=x+$\frac{1}{y}$£¬b=y+$\frac{1}{z}$£¬c=z+$\frac{1}{x}$£¬ÔòÏÂÃæ¶Ôa£¬b£¬cÈý¸öÊýµÄÅжÏÖУ¬ÕýÈ·µÄÅжÏÊÇ£¨¡¡¡¡£©
A£®ÖÁÉÙÓÐÒ»¸ö²»Ð¡ÓÚ2B£®¶¼Ð¡ÓÚ2
C£®ÖÁÉÙÓÐÒ»¸ö²»´óÓÚ2D£®¶¼´óÓÚ2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬¼ÇÀⳤΪ1µÄÕý·½ÌåC1£¬ÒÔC1¸÷¸öÃæµÄÖÐÐÄΪ¶¥µãµÄÕý°ËÃæÌåΪC2£¬ÒÔC2¸÷ÃæµÄÖÐÐÄΪ¶¥µãµÄÕý·½ÌåΪC3£¬ÒÔC3¸÷¸öÃæµÄÖÐÐÄΪ¶¥µãµÄÕý°ËÃæÌåΪC4£¬¡­£¬ÒÔ´ËÀàÍÆµÃһϵÁеĶàÃæÌåCn£¬ÉèCnµÄÀⳤΪan£¬ÔòÊýÁÐ{an}µÄ¸÷ÏîºÍΪ$\frac{6+3\sqrt{2}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®£¨1£©Èô∅⊆A⊆{1£¬2}£¬Ôò¼¯ºÏAµÄ¸öÊýΪ4£»
£¨2£©Èô{1}⊆A⊆{1£¬2}£¬Ôò¼¯ºÏAµÄ¸öÊýΪ2£»
£¨3£©Èô{a1£¬a2}⊆A⊆{a1£¬a2£¬a3£¬a4£¬a5}£¬Ôò¼¯ºÏAµÄ¸öÊýΪ8£»
£¨4£©Èô{a1£¬a2£¬¡­£¬am}⊆A⊆{a1£¬a2£¬¡­£¬am£¬b1£¬b2£¬¡­£¬bn}£¬Ôò¼¯ºÏAµÄ¸öÊýΪ2n£»
£¨5£©Èô{a1£¬a2£¬¡­£¬am}?A?{a1£¬a2£¬¡­£¬am£¬b1£¬b2£¬¡­£¬bn}£¬Ôò¼¯ºÏAµÄ¸öÊýΪ2n-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®É輯ºÏA={x2£¬x£¬xy}¡¢B={1£¬x£¬y}£¬Èô¼¯ºÏA¡¢BËùº¬ÔªËØÏàͬ£¬ÇóʵÊýx¡¢yµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸