精英家教网 > 高中数学 > 题目详情
13.已知集合A={1,2,3,4},B={x|x=$\sqrt{n}$,n∈A},则A∩B=(  )
A.{1,2,3}B.{1,$\sqrt{2}$,$\sqrt{3}$,2}C.{1,2}D.{1}

分析 化简B={x|x=$\sqrt{n}$,n∈A}={1,$\sqrt{2}$,$\sqrt{3}$,2},从而求A∩B即可.

解答 解:∵A={1,2,3,4},
∴B={x|x=$\sqrt{n}$,n∈A}={1,$\sqrt{2}$,$\sqrt{3}$,2},
故A∩B={1,2};
故选:C.

点评 本题考查了集合的化简与集合的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若△ABC中,内角A、B、C的对边分别为a、b、c,若A=$\frac{2π}{3}$,b=1,且△ABC的面积为$\sqrt{3}$,则$\frac{a+b}{sinA+sinB}$的值为2$\sqrt{7}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{2}$|sin2x|的周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=2cosx(\sqrt{3}sinx+cosx)+2$
(Ⅰ)求函数f(x)的最小正周期与单调递减区间;
(Ⅱ)求函数f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知全集U=R,集合A={x|-1≤x≤1},B={x|x2-2x≥0},则A∩B=[-1,0],A∪(∁UB)=[-1.2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x)=f(x+4),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,则a的取值范围是(  )
A.($\sqrt{3}$,2)B.($\root{3}{4}$,2)C.[$\root{3}{4}$,2)D.($\root{3}{4}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x2-3x-4<0},B={x|x>1},则A∩B=(  )
A.(1,4)B.(-1,1)C.(1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx-($\frac{1}{2}$)x-2的零点为x0,则x0所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源:2017届河北正定中学高三上月考一数学(理)试卷(解析版) 题型:选择题

一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案