精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ax3-3x的图象过点(-1,2),则a=1.

分析 根据函数图象和点的坐标之间的关系进行求解.

解答 解:∵函数f(x)=ax3-3x的图象过点(-1,2),
∴f(-1)=-a+3=2,
解得a=1,
故答案为:1

点评 本题主要考查点的坐标与函数之间的关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知A、B、C分别为△ABC的三边a、b、c所对的角,△ABC的面积为S,且$\sqrt{3}$$\overrightarrow{CA}$•$\overrightarrow{CB}$=2S.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{6}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下四个数是数列{n(n+2)}的项的是 (  )
A.98B.99C.100D.101

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设ξ~B(18,p),又E(ξ)=9,则p的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.应试教育下的高三学生身体素质堪忧,教育部门对某市100名高三学生的课外体育锻炼时间进行调查.他们的课外体育锻炼时间及相应的频数如下表:
运动时间
(单位:小时)
$[0,\frac{1}{6})$$[\frac{1}{6},\frac{1}{3})$$[\frac{1}{3},\frac{1}{2})$$[\frac{1}{2},\frac{2}{3})$$[\frac{2}{3},\frac{5}{6})$$[\frac{5}{6},1)$
总人数10182225205
将学生日均课外体育运动时间在$[\frac{2}{3},1)$上的学生评价为“课外体育达标”.
(1)根据已知条件完成下面的2×2列联表:
课外体育不达标课外体育达标合计
1055
合计
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“课外体育达标”与性别有关?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当Χ2>2.706时,有90%的把握判定变量A,B有关联;
当Χ2>3.841时,有95%的把握判定变量A,B有关联;
当Χ2>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某次数学测试中,小明完成前5道题所花的时间(单位:分钟)分别为4,5,6,x,y.已知这组数据的平均数为5,方差为$\frac{4}{5}$,则|x-y|的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A,B,C所对的边分别为a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1-cosC).
(1)判断△ABC的形状;
(2)在△ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上的P点处,设∠BDP=θ,当AD最小时,求$\frac{{|{{A}D}|}}{{|{{A}{B}}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\vec a=(4,2)$,$\vec b=(2,y)$,若$\vec a∥\vec b$,则y=(  )
A.1B.-1C.4D.-4

查看答案和解析>>

同步练习册答案