精英家教网 > 高中数学 > 题目详情
20.如图,已知四边形ABCD中AB∥CD,AD⊥AB,BP⊥AC,BP=PC,CD>AB,则经过某种翻折后以下线段可能会相互重合的是(  )
A.AB与ADB.AB与BCC.BD与BCD.AD与AP

分析 设AB=a,∠CAB=θ,则AP=acosθ,PC=BP=asinθ,AC=a(cosθ+sinθ),AD=ACsinθ=a(cosθ+sinθ)sinθ,CD=ACcosθ=a(cosθ+sinθ)cosθ,因为CD>AB,故cos2θ+sinθcosθ>1,即$sin(2θ+\frac{π}{4})>\frac{{\sqrt{2}}}{2}$,即$\frac{π}{4}<2θ+\frac{π}{4}<\frac{3π}{4}$,故$0<θ<\frac{π}{4}$.再对四个选项进行判断,即可得出结论.

解答 解:设AB=a,∠CAB=θ,则AP=acosθ,PC=BP=asinθ,AC=a(cosθ+sinθ),AD=ACsinθ=a(cosθ+sinθ)sinθ,CD=ACcosθ=a(cosθ+sinθ)cosθ,
因为CD>AB,故cos2θ+sinθcosθ>1,
即$sin(2θ+\frac{π}{4})>\frac{{\sqrt{2}}}{2}$,即$\frac{π}{4}<2θ+\frac{π}{4}<\frac{3π}{4}$,故$0<θ<\frac{π}{4}$.
A选项:假设AB=AD,则有:sin2θ+sinθcosθ=1,即$sin(2θ-\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,无解.
B选项:假设AB=BC,则有:$\sqrt{2}sinθ=1$,即$sinθ=\frac{{\sqrt{2}}}{2}$,无解.
C选项:假设BD=BC,则有:$\sqrt{2}sinθ=\sqrt{1+{{sin}^2}θ{{(sinθ+cosθ)}^2}}$,即1+2sin3θcosθ=sin2θ,无解.
D选项:假设AD=AP,则有:sin2θ+sinθcosθ=cosθ,令$f(θ)={sin^2}θ+sinθcosθ-cosθ=\frac{1-cos2θ}{2}+\frac{sin2θ}{2}-cosθ$,则f′(θ)=sin2θ+cos2θ+sinθ>0,又f(0)=-1<0,$f(\frac{π}{4})=1-\frac{{\sqrt{2}}}{2}>0$,故必存在θ0使得:f(θ0)=0,故AD与AP可能重合.
故选:D.

点评 本题考查图形的翻折,考查三角函数知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求函数f(x)=4-2x2+x$\sqrt{1-{x}^{2}}$的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点A(x,y)关于直线x+y+c=0的对称点A′的坐标为(-y-c,-x-c),关于直线x-y+c=0的对称点A″的坐标为(y-c,x+c),曲线f(x,y)=0关于直线x+y+c=0的对称曲线为f(-y-c,-x-c)=0,关于直线x-y+c=0的对称曲线为f(y-c,x+c)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个算法的程序框图所图所示,则该程序输出的结果为(  )
A.$\frac{2012}{2013}$B.$\frac{2013}{2014}$C.$\frac{1}{2013}$D.$\frac{1}{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=sin2x,则函数的周期为(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=$\frac{1}{4}$x,直线l与该抛物线交于A,B两点
(1)若线段AB的中点为(1,2),求直线l的方程
(2)若A,B两点到抛物线的F的距离之和为6,求直线l斜率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若非零数a,b满足3a=2b(a+1),且直线$\frac{2x}{a}$+$\frac{y}{2b}$=1恒过一定点,则定点坐标为(-$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=[x]的函数值表示不超过x的最大值,例如,[-3.5]=-4,[2.2]=2.当x∈(-2.5,2]时,函数值域为{-3,-2,-1,0,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.计算$\overrightarrow{AB}$+$\overrightarrow{CA}$-$\overrightarrow{CB}$=(  )
A.$\overrightarrow{AC}$B.$\overrightarrow{CA}$C.0D.$\overrightarrow{0}$

查看答案和解析>>

同步练习册答案