精英家教网 > 高中数学 > 题目详情
9.某产品的广告费用x万元与销售额y万元的统计数据如表:
广告费用x2345
销售额y26394954
根据上表可得回归方程$\widehaty=9.4x+a$,据此模型预测,广告费用为6万元时的销售额为(  )万元.
A.63.6B.65.5C.72D.67.7

分析 计算样本中心,代入回归方程得出a,得出回归方程,把x=6代入回归方程计即可.

解答 解:$\overline{x}$=$\frac{1}{4}$(2+3+4+5)=3.5,$\overline{y}$=$\frac{1}{4}$(26+39+49+54)=42,
∴42=9.4×3.5+a,解得a=9.1.
∴回归方程为$\widehat{y}$=9.4x+9.1.
当x=6时,$\widehat{y}$=9.4×6+9.1=65.5.
故选:B.

点评 本题考查了线性回归方程经过样本中心的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知命题
p1:函数f(x)=ex-e-x在R上单调递增
p2:函数g(x)=ex+e-x在R上单调递减
则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是(  )
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出的S值是(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若($\sqrt{x}$-$\frac{3}{x}$)n的展开式中各项系数绝对值之和为1024,则展开式中x的系数为(  )
A.15B.10C.-15D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设全集U=R,集合M={x|x2+x-2>0},$N=\left\{{x|{{(\frac{1}{2})}^{x-1}}≥2}\right\}$,则(∁UM)∩N=(  )
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在[495,510)内的产品为合格品,否则为不合格品,统计结果如表:
甲流水线样本的频数分布表
产品重量(克)频数
[490,495)6
[495,500)8
[500,505)14
[505,510)8
[510,515]4
(1)求甲流水线样本合格的频率;
(2)从乙流水线上重量值落在[505,515]内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且右焦点F到左顶点A的距离为4+2$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)设P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.
(i)当直线PA的斜率为$\frac{1}{2}$时,求△FMN的外接圆的方程;
(ii)设直线AN交椭圆C于另一点Q,求△APQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记${b_n}=2({log_3}{a_n}+1)(n∈{N^*})$,证明:对任意的n∈N*,不等式$\frac{{{b_1}+1}}{b_1}•\frac{{{b_2}+1}}{b_2}•…•\frac{{{b_n}+1}}{b_n}>\sqrt{n+1}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知球的直径SC=4,A、B 是该球面上的两点且AB=2$\sqrt{2}$,∠ASC=30°,∠SCB=45°,则三棱锥S-ABC的体积为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2}{3}\sqrt{3}$D.$\frac{4}{3}\sqrt{3}$

查看答案和解析>>

同步练习册答案