精英家教网 > 高中数学 > 题目详情
7.已知直线y=kx+2与圆 x2+y2=1没有公共点,则k的取值范围是(  )
A.(-$\sqrt{2},\sqrt{2}}$)B.(-$\sqrt{3},\sqrt{3}}$)C.(-∞,-$\sqrt{2}}$)∪(${\sqrt{2}$,+∞)D.(-∞,-$\sqrt{3}}$)∪(${\sqrt{3}$,+∞)

分析 当圆心到直线的距离大于半径时,直线与圆没有公共点,即可得出结论.

解答 解:直线y=kx+2可化为kx-y+2=0,
故圆心(0,0)到直线kx-y+2=0的距离d=$\frac{2}{\sqrt{{k}^{2}+1}}$>1,
解得k∈(-$\sqrt{3}$,$\sqrt{3}$),
故选:B.

点评 本题考查直线和圆的位置关系,考查点到直线的距离公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy上,点A(1,0),点B在单位圆上,∠AOB=θ(0<θ<π).
(1)若点B(-$\frac{3}{5}$,$\frac{4}{5}$),求tan(θ+$\frac{π}{4}$)的值;
(2)若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}$=$\frac{18}{13}$,求cos($\frac{π}{3}$-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且满足${S_n}=2-({\frac{2}{n}+1}){a_n}({n∈{N^*}})$.
(Ⅰ)求{an}的通项公式an
(Ⅱ)记${b_n}={2^{n-1}}{a_n}$,求$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_2}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的参数方程$\left\{\begin{array}{l}{x=-1+\sqrt{3}t}\\{y=2-t}\end{array}\right.$,求l被曲线x2-y2=-3+4$\sqrt{3}$所截弦长及弦中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)满足f(2)=3,且f(x+3)=3f(x),则f(2015)=(  )
A.3670B.3671C.3672D.3673

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的点到直线l:x-2y-12=0的最大距离为4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若|$\overrightarrow a$|=4,$\overrightarrow b$与$\overrightarrow a$反向且|$\overrightarrow b$|=2,则$\overrightarrow a$=-2 $\overrightarrow b$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两直线x+y-1=0,x+y+1=0的距离是(  )
A.2B.1C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2sin(ωx+φ)$({ω>0,|φ|<\frac{π}{2}})$的图象如图所示,则函数f(x)的解析式是(  )
A.$f(x)=2sin({\frac{10}{11}x+\frac{π}{6}\;})$B.$f(x)=2sin({\frac{10}{11}x-\frac{π}{6}\;})$
C.$f(x)=2sin({2x+\frac{π}{6}\;})$D.$f(x)=2sin({2x-\frac{π}{6}\;})$

查看答案和解析>>

同步练习册答案