精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=2sin(ωx+φ)$({ω>0,|φ|<\frac{π}{2}})$的图象如图所示,则函数f(x)的解析式是(  )
A.$f(x)=2sin({\frac{10}{11}x+\frac{π}{6}\;})$B.$f(x)=2sin({\frac{10}{11}x-\frac{π}{6}\;})$
C.$f(x)=2sin({2x+\frac{π}{6}\;})$D.$f(x)=2sin({2x-\frac{π}{6}\;})$

分析 由点(0,1)在函数图象上,可得1=2sinφ,结合|φ|<$\frac{π}{2}$,可得φ,又点($\frac{11π}{12}$,0)在函数图象上,可得0=2sin(ω$\frac{11π}{12}$+$\frac{π}{6}$),从而解得ω的一个值为2,从而得解.

解答 解:由函数图象可得:点(0,1)在函数图象上,故有:1=2sinφ,由于$,{|φ|<\frac{π}{2}}$,可得φ=$\frac{π}{6}$,
又点($\frac{11π}{12}$,0)在函数图象上,可得:0=2sin(ω$\frac{11π}{12}$+$\frac{π}{6}$),
由ω$\frac{11π}{12}$+$\frac{π}{6}$=2kπ,k∈Z,解得:ω=$\frac{24k-2}{11}$,k∈Z,ω>0,
当k=1时,可得:ω=2,
故选:C.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,确定ω的值是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知直线y=kx+2与圆 x2+y2=1没有公共点,则k的取值范围是(  )
A.(-$\sqrt{2},\sqrt{2}}$)B.(-$\sqrt{3},\sqrt{3}}$)C.(-∞,-$\sqrt{2}}$)∪(${\sqrt{2}$,+∞)D.(-∞,-$\sqrt{3}}$)∪(${\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,a1=3,an+1=1+2Sn
(1)a2,a3,a4的值;
(2)求数列{an}的通项公式;
(3)设bn=$\frac{n}{{a}_{n}}$,证明数列{bn}的前n项和Tn<$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在一组样本数据(x1,y1),(x2,y2),…(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=2x+1上,则这组样本数据的样本相关系数为(  )
A.-1B.0C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.使cosx=1-m有意义的m的取值范围为(  )
A.m≥0B.0≤m≤2C.-1<m<1D.m<-1或m>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用秦九韶算法计算当x=2时,f(x)=3x4+x3+2x2+x+4的值的过程中,v2的值为(  )
A.3B.7C.16D.33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ACB中,∠ACB=120°,AC=BC=3,点O在BC边上,且圆O与AB相切于点D,BC与圆O相交于点E,C,则∠EDB=30°,BE=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是(  )(单位:m)
A.10$\sqrt{2}$B.10$\sqrt{6}$C.10$\sqrt{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\int_0^6{\sqrt{1-\frac{x^2}{36}}}$dx=$\frac{3π}{2}$.

查看答案和解析>>

同步练习册答案