精英家教网 > 高中数学 > 题目详情
4.已知公差为d等差数列{an}满足d>0,且a2是a1,a4的等比中项.记bn=a${\;}_{{2}^{n}}$(n∈N+),则对任意的正整数n均有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<2,则公差d的取值范围是[$\frac{1}{2},+∞$).

分析 因为a2是a1和a4的等比中项,所以(a1+d)2=a1(a1+3d),继而求得a1=d,从而$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+…+\frac{1}{{b}_{n}}$的式子即可求得,列式求解即得到d的取值范围.

解答 解:因为a2是a1和a4的等比中项,所以(a1+d)2=a1(a1+3d),
解得a1=d>0,所以an=nd,因此,bn=2nd,
故,$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+…+\frac{1}{{b}_{n}}$=$\frac{1}{d}[\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n}}]$=$\frac{1}{d}[1-\frac{1}{{2}^{n}}]<\frac{1}{d}≤2$,
所以,$d≥\frac{1}{2}$,
故答案为:[$\frac{1}{2},+∞$).

点评 本题主要考查等差数列和等比数列的综合应用,属于难度较大的题目,在高考中常在选择填空压轴出现.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.某空间几何体的三视图为半径为$\sqrt{3}$的圆,则该几何体的内接正方体的棱长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U=R,集合A={x||x|<1},B={x|x>-$\frac{1}{2}$},则A∪B={x|x>-1},A∩B={x|-$\frac{1}{2}$<x<1},(∁UB)∩A={x|x|-1<x≤-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若不等式ax2+bx+c>0的解集为{x|-1<x<2},则不等式$\frac{2a+b}{x}$>bx的解集为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(1)求证:A1C⊥平面BDE;
(2)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点 A(0,-l),且离心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若椭圆M上存在点B,C关于直线y=kx-1对称,求k的所有取值构成的集合S,并证明对于?k∈S,BC的中点恒定在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.16+8$\sqrt{3}$B.16+4$\sqrt{3}$C.48+8$\sqrt{3}$D.48+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2|x+a|+3a(a∈R).
(1)若函数f(x)的图象关于y轴对称,求实数a的值;
(2)设a=-$\frac{1}{4}$,求f(x)的单调增区间;
(3)设函数g(x)=2x,若对任意x1≤0,存在x2∈[-3,+∞],有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在($\sqrt{2}$,+∞)上是减函数,则a的取值范围是(  )
A.[2$\sqrt{2}$,4)B.[2$\sqrt{2}$,$\sqrt{2}$+2]C.(-∞,2$\sqrt{2}$]D.[2$\sqrt{2}$,+∞)

查看答案和解析>>

同步练习册答案