精英家教网 > 高中数学 > 题目详情
16.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.16+8$\sqrt{3}$B.16+4$\sqrt{3}$C.48+8$\sqrt{3}$D.48+4$\sqrt{3}$

分析 由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱柱,分别计算底面面积和侧面积,相加可得答案.

解答 解:由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱柱,
底面面积S=$\frac{1}{2}$×$4×2\sqrt{3}$=4$\sqrt{3}$,
且底面为边长为4的等边三角形,
故底面周长为12,高为4,故侧面面积为:12×4=48,
故该几何体的表面积S=48+8$\sqrt{3}$,
故选:C

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在等比数列{an}中,a1=8,a4=a3•a5,则a7=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(1)求函数f(x)的零点,并求反函数f-1(x);
(2)设g(x)=2log2$\frac{1+x}{k}$,若不等式f-1(x)≤g(x)在区间[$\frac{1}{2}$,$\frac{2}{3}$]上恒成立,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知公差为d等差数列{an}满足d>0,且a2是a1,a4的等比中项.记bn=a${\;}_{{2}^{n}}$(n∈N+),则对任意的正整数n均有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<2,则公差d的取值范围是[$\frac{1}{2},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x2+ax+a)ex(a≤2,x∈R)
(1)若a=1,求y=f(x)在点(0,f(0))处的切线方程;
(2)是否存在实数a,使得f(x)的极大值为3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,函数f(x)=ln($\frac{x}{a}$-1)+$\frac{1}{x}$+$\frac{a}{2}$.
(Ⅰ) 讨论函数f(x)的单调性;
(Ⅱ) 当函数f(x)存在极值时,设所有极值之和为g(a),求g(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}共有9项,其中,a1=a9=1,且对每个i∈{1,2,…,8},均有$\frac{{a}_{i+1}}{{a}_{i}}$∈{2,1,-$\frac{1}{2}$},记S=$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+…+$\frac{{a}_{9}}{{a}_{8}}$,则S的最小值为(  )
A.5B.5$\frac{1}{2}$C.6D.6$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.变量x、y满足条件$\left\{\begin{array}{l}x-y+1≤0\\ y≤1\\ x>-1\end{array}\right.$,则(x-2)2+y2的最小值为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\sqrt{5}$C.5D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知两个集合$A=\left\{{x∈R\left|{y=\sqrt{1-{x^2}}}\right.}\right\}$,$B=\left\{{x|\frac{x+1}{1-x}≥0}\right\}$则A∩B=(  )
A.AB.BC.{-1,1}D.

查看答案和解析>>

同步练习册答案