精英家教网 > 高中数学 > 题目详情
8.已知数列{an}共有9项,其中,a1=a9=1,且对每个i∈{1,2,…,8},均有$\frac{{a}_{i+1}}{{a}_{i}}$∈{2,1,-$\frac{1}{2}$},记S=$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+…+$\frac{{a}_{9}}{{a}_{8}}$,则S的最小值为(  )
A.5B.5$\frac{1}{2}$C.6D.6$\frac{1}{2}$

分析 令bi=$\frac{{a}_{i+1}}{{a}_{i}}$(1≤i≤8),根据数列比值的关系,结合S的表达式进行推导即可.

解答 解:令bi=$\frac{{a}_{i+1}}{{a}_{i}}$(1≤i≤8),
则对每个符合条件的数列{an}满足$\sum_{i=1}^{8}$bi=$\sum_{i=1}^{8}$$\frac{{a}_{i+1}}{{a}_{i}}$=$\frac{{a}_{9}}{{a}_{1}}$=1,
且bi∈{2,1,-$\frac{1}{2}$},1≤i≤8.
反之,由符合上述条件的八项数列{bn}可唯一确定一个符合题设条件的九项数列{an}.
记符合条件的数列{bn}的个数为N,
由题意知bi(1≤i≤8)中有2k个-$\frac{1}{2}$,2k个2,8-4k个1,
且k的所有可能取值为0,1,2.
对于三种情况,当k=2时,S取到最小值6.
故选:C.

点评 本题考查数列的相邻两项比值之和的最小值的求法,考查满足条件的数列的个数的求法,解题时要认真审题,注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图,F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点,过F作渐近线的垂线,垂足为P,与另一条渐近线相交于Q,若|PF|=|PQ|,则C的离心率为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(1)求证:A1C⊥平面BDE;
(2)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.16+8$\sqrt{3}$B.16+4$\sqrt{3}$C.48+8$\sqrt{3}$D.48+4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn=$\frac{1}{2}{a_n}{a_{n+1}}(n∈{N^*})$,其中a1=1,an≠0.
(Ⅰ)求a2,a3,a4
(Ⅱ)求数列{an}的前n个偶数项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2|x+a|+3a(a∈R).
(1)若函数f(x)的图象关于y轴对称,求实数a的值;
(2)设a=-$\frac{1}{4}$,求f(x)的单调增区间;
(3)设函数g(x)=2x,若对任意x1≤0,存在x2∈[-3,+∞],有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义[x]表示不超过x的最大整数,如[0.5]=0,[-2.5]=-3,若f(x)=cos(x-[x]),给出下列结论:
①y=f(x)为偶函数;
②y=f(x)为周期函数且周期为1;
③当x∈[0,1),f(x)是单调递增函数;
④y=f(x)的最大值是1,最小值是cos1;
⑤y=f(x)的最大值是1,无最小值.
其中正确结论的序号是②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.展开(a+b+c)10合并同类项后的项数是(  )
A.11B.66C.76D.134

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,AC=12,∠ABC=2∠C.
(1)若∠C=30°,求△ABC的面积;
(2)若BD平分∠ABC,AH⊥BD于H,求BH的长;
(3)若sin∠C=$\frac{3}{5}$,求sin∠BAC的值.

查看答案和解析>>

同步练习册答案