精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和Sn=$\frac{1}{2}{a_n}{a_{n+1}}(n∈{N^*})$,其中a1=1,an≠0.
(Ⅰ)求a2,a3,a4
(Ⅱ)求数列{an}的前n个偶数项的和Tn

分析 (I)运用递推关系式Sn=$\frac{1}{2}{a_n}{a_{n+1}}(n∈{N^*})$,n=1时求解,a2=2;再运用求解a3,a4
(II)运用递推关系式得出${a_{n+1}}={S_{n+1}}-{S_n}=\frac{1}{2}{a_{n+1}}{a_{n+2}}-\frac{1}{2}{a_n}{a_{n+1}}$,化简得出an+2-an=2,可判断出数列{an}的偶数项是以2为公差的等差数列.再运用等差数列求和公式即可.

解答 解:(Ⅰ)∵${S_n}=\frac{1}{2}{a_n}{a_{n+1}}(n∈{N^*})$,a1=1,an≠0,
∴${a_1}=\frac{1}{2}{a_1}{a_2}$,即a2=2;
同理a3=3,a4=4.
(Ⅱ)∵${S_n}=\frac{1}{2}{a_n}{a_{n+1}}$,∴${a_{n+1}}={S_{n+1}}-{S_n}=\frac{1}{2}{a_{n+1}}{a_{n+2}}-\frac{1}{2}{a_n}{a_{n+1}}$,
∵an≠0,∴an+1≠0,
∴${a_{n+2}}={a_n}+2(n∈{N^*})$,即an+2-an=2,
∴数列{an}的偶数项是以2为公差的等差数列.
又由(Ⅰ)知,a2=2,∴a2n=2+2(n-1)=2n,
∴${T_n}=\frac{{n({a_2}+{a_{2n}})}}{2}=\frac{n(2+2n)}{2}=n(n+1)={n^2}+n$.

点评 本题综合考查了数列的概念,符号语言,递推关系式,关键是判断分析数列的类型,运用公式即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE.
(2)点M是线段EF上任意一点,求三棱锥B-ACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知幂函数y=f(x)图象过点(2,$\sqrt{2}$),则该幂函数的值域是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x2+ax+a)ex(a≤2,x∈R)
(1)若a=1,求y=f(x)在点(0,f(0))处的切线方程;
(2)是否存在实数a,使得f(x)的极大值为3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆x2+(y+1)2=5上的点到直线2x-y+9=0的最大距离为3$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}共有9项,其中,a1=a9=1,且对每个i∈{1,2,…,8},均有$\frac{{a}_{i+1}}{{a}_{i}}$∈{2,1,-$\frac{1}{2}$},记S=$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+…+$\frac{{a}_{9}}{{a}_{8}}$,则S的最小值为(  )
A.5B.5$\frac{1}{2}$C.6D.6$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$z=\frac{i}{1-i}$在复平面上表示的点在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数${({\frac{1-i}{{\sqrt{2}}}})^{2015}}$计算的结果是(  )
A.-1B.-iC.$\frac{1+i}{{\sqrt{2}}}$D.$\frac{-1+i}{{\sqrt{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若k∈[-2,2],则k的值使得过A(1,1)可以做两条直线与圆x2+y2+kx-2y-$\frac{5}{4}$k=0相切的概率等于$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案