精英家教网 > 高中数学 > 题目详情
15.复数$z=\frac{i}{1-i}$在复平面上表示的点在第(  )象限.
A.B.C.D.

分析 根据复数的几何意义进行求解.

解答 解:$z=\frac{i}{1-i}$=$\frac{i(1+i)}{(1-i)(1+i)}$=$\frac{i-1}{2}$=$-\frac{1}{2}$+$\frac{1}{2}$i,
故对应的点的坐标为($-\frac{1}{2}$,$\frac{1}{2}$),位于第二象限,
故选:B

点评 本题主要考查复数的几何意义,根据复数的基本运算进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,满足$\frac{a}{sinA}$=$\frac{b}{\sqrt{3}cosB}$.
(Ⅰ)求角B的值;
(Ⅱ)若b=3,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2-x-y=0经过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F和上顶点D.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点P(-2,0)作斜率不为零的直线l与椭圆E交于不同的两点A,B,直线AF,BF分别交椭圆E于点G,H,设$\overrightarrow{AF}$=λ1$\overrightarrow{FG}$,$\overrightarrow{BF}$=λ2$\overrightarrow{FH}$.(λ1,λ2∈R)
(i)求λ12的取值范围;
(ii)是否存在直线l,使得|AF|•|GF|=|BF|•|HF|成立?若存在,求l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn=$\frac{1}{2}{a_n}{a_{n+1}}(n∈{N^*})$,其中a1=1,an≠0.
(Ⅰ)求a2,a3,a4
(Ⅱ)求数列{an}的前n个偶数项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{m}$=(cosx,sin2x),$\overrightarrow{n}$=(cosx,$\frac{\sqrt{3}}{2}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求f(x)的取值范围;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,若函数g(x)=bf(x)+c在x=A处取最大值6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义[x]表示不超过x的最大整数,如[0.5]=0,[-2.5]=-3,若f(x)=cos(x-[x]),给出下列结论:
①y=f(x)为偶函数;
②y=f(x)为周期函数且周期为1;
③当x∈[0,1),f(x)是单调递增函数;
④y=f(x)的最大值是1,最小值是cos1;
⑤y=f(x)的最大值是1,无最小值.
其中正确结论的序号是②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)$\overrightarrow{BA}$•$\overrightarrow{BC}$=c$\overrightarrow{CB}$•$\overrightarrow{CA}$.
(1)求角B的大小;
(2)若|$\overrightarrow{BA}$-$\overrightarrow{BC}$|=2$\sqrt{2}$,求|$\overrightarrow{BA}$|+|$\overrightarrow{BC}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足z(1+i)=1-i(i是虚数单位),则z的共轭复数$\overline{z}$的虚部是(  )
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在抽样方法中,有放回抽样与无放回抽样中个体被抽到的概率是不同的,但当总体的容量很大而抽取的样本容量很小时,无放回抽样可以近似看作有放回抽样.现有一大批产品,采用随机抽样的方法一件一件抽取进行检验.若抽查的4件产品中未发现不合格产品,则停止检查,并认为该批产品合格;若在查到第4件或在此之前发现不合格产品,则也停止检查,并认为该批产品不合格.假定该批产品的不合格率为0.1,设检查产品的件数为X.
(Ⅰ) 求随机变量X的分布列和数学期望;
(Ⅱ) 通过上述随机抽样的方法进行质量检查,求认为该批产品不合格的概率.

查看答案和解析>>

同步练习册答案